

of and

IMPLEMENTATION OF COLLABORATIVE RF LOCALIZATION USING A
SOFTWARE-DEFINED RADIO NETWORK

THESIS

Augustine A. Honore, 1Lt, USAF

AFIT/GE/ENG/09-20

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GE/ENG/09-20

IMPLEMENTATION OF COLLABORATIVE RF LOCALIZATION USING A
SOFTWARE-DEFINED RADIO NETWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Augustine A. Honore, BSEE

First Lieutenant, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/ GE/ENG/09-20

IMPLEMENTATION OF COLLABORATIVE RF LOCALIZATION USING A
SOFTWARE-DEFINED RADIO NETWORK

Augustine A. Honore, BSEE

First Lieutenant, USAF

Approved:

1lr1f\ytcA
Date

/7 ;1(,zr d'1
LtCol Smart H. KurkowSl{i,1Jl:ill (Member) Date

171'1af1JJOJ
Dr. Richard K. Martin (Member) Date

iv iv

AFIT/GE/ENG/09-20

Abstract

This thesis investigates the use of collaboration between sensor nodes that were

tasked with localizing a radio frequency emitter. Localization is a necessary component for

dynamic spectrum access. Using a set of software-defined radios as our sensors and a

received signal strength-based maximum likelihood localization algorithm, we successfully

localized transmitting nodes based on their received signal strength. Our experiment was

conducted outdoors using a flexible topology that could be shaped into 21 sub-topologies

that varied in size, and orientation with respect to the transmitters. This was made possible

through application of a time shift concept and a post-processing technique. We were able to

compare our real world results with the simulated results of the same topologies. Although

our simulation results did not fully comply with our real world results, we observed some

common trends regarding effective topology design.

v v

Acknowledgments

 In the beginning, there was Reginald Cooper, Ruolin Zhou, Dan Sundersingh, and

Omer Mian. Each gave their time to help me get started with my research, and I am thankful

for it. Without their efforts, I would not have made it as far as I have with the radios.

I would also like to thank Dr. Richard Martin for sharing his insight and his research,

and for offering clever suggestions to help improve the value of my work. Thanks are due to

LtCol Stuart Kurkowski for helping me find my writing voice – a key skill that I will

continue to polish. Thanks also go to Maj Michael Saville for his patience and willingness to

help me learn about the joys of the EM spectrum and antenna theory.

I owe a large debt for the combined support of Luis Oquendoclass, Benjamin

Ramsey, and Anthony Larweck. Thank you for supporting me at every stage of the game and

for helping me get through in one piece. Because of it, I am a better person. And my greatest

appreciation goes to Capt Ryan Thomas for giving me the opportunity to break new ground

and for providing the tools to get things done. Thank you all.

Augustine A. Honore

vi vi

Table of Contents
Page

Abstract .. iv

Acknowledgments.. v

Table of Contents ... vi

List of Figures .. viii

List of Tables .. x

I. Introduction .. 1

1.1 Motivation .. 1
1.2 Background .. 2
1.3 Research Objectives .. 2
1.4 Research Scope .. 2
1.5 Assumptions and Limitations ... 3
1.6 Thesis Document Organization .. 3

II. Background .. 5

2.1 Introduction ... 5
2.2 Cognitive Radio and Cognitive Networks ... 5
2.3 Node Localization Techniques ... 7

2.3.1 Received Signal Strength Indicated ... 7
2.3.2 Time of Arrival .. 8
2.3.3 Time Difference of Arrival .. 9
2.3.4 Angle of Arrival ... 10

2.4 Wireless Sensor Networks ... 10
2.5 Multisensor Data Fusion .. 13
2.6 Summary ... 16

III. Methodology .. 17

3.1 Introduction ... 17
3.2 The GNU Radio Development Software and Universal Software Radio Peripheral ... 17

3.2.1 GNU Radio .. 17
3.2.2 USRP ... 18
3.2.3 Decimation and FFT size ... 20
3.2.4 Determining the Decimation Rate and FFT Size ... 22

3.3 Data Collection and Data Reduction Methodologies .. 25
3.3.1 USRP Data Collection .. 26

vii vii

3.3.2 MATLAB Data Reduction ... 28
3.3.3 Unexpected Problem: Ringing ... 30

3.4 Hardware Characterization .. 31
3.5 RSSI Localization Implementation .. 35

3.5.1 RSSI Localization Algorithm ... 35
3.5.2 Usage Considerations .. 38

3.6 Collaboration Experiments.. 39
3.6.1 Overview ... 39
3.6.2 Time Shift Concept ... 40
3.6.3 Design Measures for Time Shift Validity ... 43
3.6.4 Experiment Execution .. 45
3.6.5 Topology Simulation ... 47

3.7 Summary ... 48

IV. Data Analysis ... 49

4.1 Introduction ... 49
4.2 Performance Metrics .. 49
4.3 General Observation Guidelines .. 51
4.4 Real World Results .. 51
4.5 Simulation Results ... 62

V. Conclusions and Recommendations .. 65

5.1 Introduction ... 65
5.2 Review of Research Objective .. 65
5.3 Significance of Research .. 66
5.4 Recommendations for Future Research .. 66
5.5 Summary ... 67

Appendix A. GNU Radio Sample Code .. 68

Appendix B. Real-time Collaborative Localization ... 72

Appendix C. Sensor Topologies .. 76

Appendix D. Topology Rankings .. 81

Bibliography .. 83

viii viii

List of Figures

Figure Page

Figure 1: Components of a sensor node ... 11

Figure 2: The JDL Fusion Model ... 14

Figure 3: USRP version 1 hardware enclosure displaying external interfaces 19

Figure 4: Top-down view of USRP version 1 main board and daughterboard components 19

Figure 5: Block diagram of the USRP hardware interfaces .. 21

Figure 6: Decimation value comparison for d = 4, 8, 16 .. 23

Figure 7: FFT Size Comparison for N = 256, 512, 1024 ... 25

Figure 8: Pseudo code for data collection wrapper function ... 26

Figure 9: Typical in-phase and quadrature received FM signals ... 27

Figure 10: Pseudo code that converts a complex signal into a PSD ... 28

Figure 11: Complex time domain signal conversion to a PSD via the Fourier Transform ... 29

Figure 12: Several PSDs are time-averaged to reduce noise ... 30

Figure 13: In-phase and quadrature received FM signals with ringing 31

Figure 14: USRP hardware characterization setup ... 32

Figure 15: Time-varying plot of the characterization signal’s PSD ... 33

Figure 16: USRP hardware characterization: linear and log-scale plots 34

Figure 17: Example node localization search space ... 36

Figure 18: Example fit error surface viewed from the side .. 38

Figure 19: Sensor configurations used for time shift .. 41

Figure 20: Complete sensor topology as a result of applying time shift 41

Figure 21: Rectangle sub-topology example ... 42

Figure 22: Histograms for sensor inclusion .. 43

ix ix

Figure 23: Four-phases of the outdoor experiment ... 46

Figure 24: Time-varying radial error comparison between Triangle_3 and Hexagon_1B 50

Figure 25: Mean absolute position error for all real world topologies against TX_1 52

Figure 26: Mean absolute position error for all real world topologies against TX_2 53

Figure 27: Histograms of the most helpful and least helpful sensor topologies 56

Figure 28: Scatter plot of Hexagon_1B’s position estimates .. 57

Figure 29: Scatter plot of Triangle_3’s position estimates .. 57

Figure 30: Received power by distance for Triangle_3 and Hexagon_1B 58

Figure 31: Log-domain representation of received power for Triangle_3’s nodes 59

Figure 32: Log-domain representation of received power for Hexagon_1B’s nodes............. 59

Figure 33: Normalized position error for all real world topologies against TX_1 61

Figure 34: Normalized position error for all real world topologies against TX_2 62

Figure 35: Mean absolute position error for all simulated topologies against TX_1 63

Figure 36: Mean absolute position error for all simulated topologies against TX_2 64

x x

List of Tables

Table Page

Table 1: USRP Motherboard specifications .. 20

Table 2: USRP Daughterboard specifications (partial list) ... 20

1 1

IMPLEMENTATION OF COLLABORATIVE RF LOCALIZATION
USING A SOFTWARE-DEFINED RADIO NETWORK

I. Introduction

1.1 Motivation

Although there used to be a general perception that the radio spectrum in the United

States was becoming over-crowded, we now know that this perception was actually due to a

spectrum access problem [1]. The Federal Communication Commission’s (FCC) traditional

approach to spectrum allocation worked well for a time when radio technologies were

simpler. But compartmentalized spectrum assignment, which was once the solution, has now

become a serious issue as the demand for available spectrum increases among an ever-

growing number of users [2], [3], [4], [5].

Practical access of the unused spectra (also called whitespace), whose availability

shifts dynamically in space and time, requires an adaptive solution. In the last decade, a bold

solution was proposed – an autonomous agent that proactively makes decisions to assist a

user – in order to make spectrum access and other communication-based tasks feasible

despite dynamic and constrained operating environments. The cognitive radio (CR), as

introduced by Mitola and Maguire [6], is centered entirely on a sole user, acting as a personal

assistant that delivers end-user services through its ability to observe, adapt, and learn.

Dynamic spectrum access, however, is not a problem best solved through individual

effort. A CR’s estimation of its current radio frequency (RF) environment has been shown to

become significantly more accurate when performed in cooperation with other CRs [7], [8].

A network of collaborating cognitive radios (a cognitive network) benefits from a shared

representation of its RF environment by creating a more complete depiction of its dynamic

2 2

surroundings. An essential part of this RF topography process identifies the presence of

primary users, their spatial locations, and their antenna patterns, among other characteristics.

In this way, primary users may continue to operate unimpeded, and the collaborating CRs

(secondary users) can still productively share the limited medium.

1.2 Background

Previous research has examined the process of characterizing the RF environment by

mapping spectrum usage in space, time, frequency, and code. The 5.1 dimensional RF

topography developed by Martin and Thomas [9] uses simulation results to demonstrate

their localization algorithm which identifies the presence, positions, and antenna patterns of

primary users within a search space populated by CR nodes cooperating in a noisy

environment. Using the received signal strength (RSS) obtained at each receiving sensor and

known receiver positions, they have demonstrated how their algorithm can be used to

improve decisions on spectrum availability in a dynamic spectrum access system.

1.3 Research Objectives

The objectives of this research are: to investigate whether Martin’s proposed source

localization algorithm [9] can be implemented in a real-time environment using a flexible

hardware testbed, to examine the accuracy of source position estimates using the algorithm

through hardware experimentation, and to compare the results obtained in real-world

experiments against those achieved through simulation. Above all, this research sought to

demonstrate that collaborative localization among cognitive radios enables network-wide

dynamic spectrum access by helping to form a shared representation of the RF environment.

1.4 Research Scope

3 3

Our experiments were conducted using receivers and transmitters operating within

the FM band (88 MHz to 108 MHz). The transmitting and receiving nodes were configured

with omnidirectional monopole antennas. None of the nodes were mobile. The RF

localization performed in our study was entirely RSSI-based; it did not incorporate any other

localization approaches such as time-difference of arrival (TDOA) and angle of arrival

(AOA). We limited our position estimation to two dimensions. Also, we chose to focus on

the data collection process and not on the protocols that govern data exchange.

1.5 Assumptions and Limitations

Some assumptions were made and a few limitations were met in order to reach a

purposeful end to this research. For example, all of the sensing nodes were assumed to be

cooperating with trustworthy peers. Also, it was assumed that the nodes were able to

exchange their information over a low-bandwidth, reliable channel that was set up

beforehand. Although the simulations performed by Martin and Thomas included many

randomly distributed sensing nodes, hardware costs limited our experiments to only a few

sensing nodes and even fewer transmitting nodes.

1.6 Thesis Document Organization

The remaining sections of this document are arranged in the following order.

Chapter 2 provides background information on the systems, ideas, and techniques used to

perform our experiment. It also discusses the research of others in the field and how they

contributed to this formal study. Chapter 3 details the sensor characterization process we

used to ensure a homogeneous network and discusses the design of our experiment. Chapter

4 presents our performance criteria, our results, and provides a comparison between

experimental results and simulation results. Chapter 5 summarizes our findings and lays a

4 4

foundation for future work. The appendices are reserved for expanding on ideas that were

briefly mentioned in the chapters, and several resources for any individual pursuing a similar

line of research.

5 5

II. Background

2.1 Introduction

 The purpose of this chapter is to provide background information about concepts

directly related to our research and to discuss the efforts of others. Much of our research is

described by the following subject areas: cognitive radio, cognitive networks, node

localization, wireless sensor networks, and multisensor data fusion. In Section 2.2 we give a

history of the cognitive radio and cognitive network by first exploring the software-defined

radio. Section 2.3 provides a comparison of several wireless node localization techniques that

are commonly used. As a core discipline of multi-agent collaboration, we define the

components of a generalized wireless sensor network in Section 2.4. In Section 2.5 we

expand this definition with a survey of the most relevant data fusion models and

architectures. Each section provides a summary of research efforts within the field.

2.2 Cognitive Radio and Cognitive Networks

The beginnings of the cognitive radio concept are rooted in the areas of radio

communications and artificial intelligence. These concepts formed the foundations of a

cognitive network. In this section we present the ideas and events which led to the creation

of both cognitive systems, and explain some of the ongoing research being done to mature

these technologies.

The early 20th century work of Marconi gave the world a new way to communicate

using what was then called a “wireless telegraph.” For more than a century, radio technology

has matured into an indispensible tool that permeates all areas of our lives. The radio that

once brought True Detective Mysteries to numerous listeners on Sunday afternoons, and

President Roosevelt’s famous Fireside Chats (among others) has grown into a nearly trillion

6 6

dollar business whose effects are seen in diverse areas from public safety, to personal

communication, and everything in between [10], [11].

It was not until the mid-1980s that digital communications began to shape radio

technology by combining hardware with the flexibility of software. One of the first major

breakthroughs was the military software radio, SpeakEasy [12]. Developed at Rome Air

Force Base, New York, it was intended to be a multiband, multimode, interoperable solution

to the proliferation of incompatible radio units – a logistical nightmare. The military software

radio was designed in response to the Department of Defense’s long-standing question:

‘How can the military ensure communication with its latest allies and global support

structure, deny interception by [its] current enemies, take advantage of the rapid technology

changes, and control the costs of military spending?’ [12] The modularity, open architecture

design, and upgradeability of the SpeakEasy system helped to pave the way for commercial

development of what would be known as software-defined radio – a term coined by Mitola

in his 1992 paper [13].

The software-defined radio (SDR) evolved from its military communications roots

into a more accessible tool for commercial applications such as cellular infrastructure

systems [14], [15]. This evolution was made in part by Wayne Bosner, of the Air Force

Research Laboratories (AFRL) who founded the SDR Forum. Working in conjunction with

the Institute of Electrical and Electronic Engineers (IEEE) P1900.1 group, they set out to

develop hardware and software standards that would help ensure interoperability among all

SDRs developed in industry, worldwide [16], [17]. Their pursuits brought together the

software architecture, microprocessor, spectrum policy, and digital signal processing fields.

Then, in 1999 Mitola and Maguire formally introduced the cognitive radio (CR) [6]

where they defined what would be an extension of the SDR that would use its awareness of

7 7

internal and external influences in order smartly interact with the RF environment. The

digital communications and artificial intelligence communities took an interest because much

of the existing technology could be used to implement one almost immediately. Finding an

expanded use for the CR concept, Thomas proposed a more collaborative agenda [18] in

which networked devices would use their situation awareness to fulfill larger, network-wide

objectives and thus realize the concept of an adaptive data network. Introduced as the

Cognitive Network (CN), focus was shifted away from the individual device (or user)

towards broader end-to-end decisions and goals.

2.3 Node Localization Techniques

 Node localization is the process of determining position information for various

wireless nodes in a network. Radio Frequency (RF) localization techniques are those

methods that use signal measurements and signal processing to calculate position

information for wireless nodes. The various RF localization techniques that exist today are

unique according to their signal-measurement focus. For example, one approach measures

the strength of a received signal in terms of a voltage or power. Other approaches use signal

propagation time. Another uses incidence angles of received signals as they enter an array of

antennas. Each of these major approaches has its own strengths and weaknesses which we

compare below.

2.3.1 Received Signal Strength Indicated

Received Signal Strength Indicated (RSSI) is a measure of how strong a signal is

when it arrives at a sensor. The Received Signal Strength (RSS, henceforth RSSI) is

commonly taken as a voltage measurement, or equivalently calculated as a signal power (e.g.

the magnitude squared). Measurements can be made from acoustic, RF or other types of

8 8

signals without infringing on bandwidth or requiring complex hardware. However, RSS

measurements, are known to vary unpredictably usually because of operating environment

conditions [19]. The most influential sources of error are due to multipath propagation and

shadowing. Multipath is a phenomenon that destructively (or constructively) combines

signals of differing amplitude and phase orientations that have traversed multiple paths prior

to arriving at the receiver. Shadowing is the attenuation that results when a signal is forced to

go through or bend around obstacles such as walls or trees. Despite these hazards, the

relative simplicity and low cost of RSSI-based techniques make them attractive solutions for

localization tasks.

When RSSI values are taken using a range-aware approach, an effective propagation

loss can be calculated at the receiving node given a known transmission power. Theoretical

and empirical models can be applied to convert the propagation loss into a radial distance

estimate [20]. However, when taken using a range-free approach, which makes no assumption

about distance information, environmental effects can be significantly reduced as more

sensing nodes are allowed to participate in the estimation process. In general, range-free

approaches require anchor nodes – nodes that "know" their own position – that support

regular (position-unaware) nodes in order to remotely sense a signal emitter.

2.3.2 Time of Arrival

Time of Arrival (TOA) is the measured time at which a known signal first arrives at a

receiver. This measurement includes the time of transmission (the time it takes an RF source

to "put" a signal into the environment) and the propagation delay (the time it takes the signal

to move from a source antenna to a receiver antenna). The TOA is determined by

calculating the cross-correlation between the received signals and the known transmitted

signal. The location of the largest cross-correlation peak indicates when the line-of-sight

9 9

(LOS) signal arrived, and yields a time delay when taken with respect to a reference time.

The location and height of the peak are greatly influenced by additive noise, which degrades

the peak; and by self-interference from multipath signals, which obscures the peak of the

LOS signal [19]. The separation distance between the transmitter and receiver is estimated by

multiplying the time delay by a known propagation speed such as the speed of light or the

speed of sound. Since TOA approaches are based on accurate timing, they generally require

more sophisticated hardware and an absolute time reference.

2.3.3 Time Difference of Arrival

Time Difference of Arrival (TDOA) techniques, on the other hand, are relatively

immune to timing errors because they calculate a signal's time delay by using the difference in

arrival times of the same known signal received by two antennas. Thus, any internal clock

bias experienced by either sensor is eliminated because the difference calculation ignores an

absolute time reference [19]. This gives way for a less-costly asynchronous localization

approach because specialized timing devices are unnecessary. Unlike the TOA method,

which uses the time delay and propagation speed to calculate a distance, TDOA

measurements define (or are solutions to) hyperbolas that lie between the transmitting node

and the receiving node. When another TDOA measurement is performed by a different pair

of sensing nodes, an additional hyperbola is created. The point at which the two hyperbolas

intersect indicates the position estimate [20]. Position estimates using TDOA have been

shown to yield better performance than TOA methods particularly in multipath

environments [21].

10 10

2.3.4 Angle of Arrival

Rather than providing distance information, Angle of Arrival (AOA) measurements

identify the direction of origin for a signal of interest. Using a specifically designed antenna

array placed on a sensing node, TOA measurements and signal processing techniques are

applied to calculate an arrival angle with respect to the sensor's orientation. Unlike the

TDOA approach, direction estimate accuracy is dependent on a clear LOS path between the

transmitter and receiver antennas [21]. Angle information can also be used to perform

position estimates by calculating the point of intersection between two lines, drawn from

two directional antennas, occurring at angles with respect to some reference orientation [22].

However, using angle information alone to determine position is not a common practice for

RF localization. Instead, AOA measurements are used to supplement other localization

techniques.

2.4 Wireless Sensor Networks

Wireless sensor networks (WSNs) are self-organizing, ad hoc networks made up of a

large number of nodes that measure things. As such, nodes are typically designed to be low-

cost, low-power, and capable of communicating over short distances. The general premise is

to be able to observe phenomena by deliberately placing (or scattering) a group of

collaborating nodes onto an area of interest and to have them transmit the sensed data

wherever it is needed. Being wireless, it reduces installation costs; and being ad hoc, nodes

may be removed or added just as easily. Applications for wireless sensor networks span

many disciplines including the military [23], [24]; the environment [25],[26]; human health

[27]; and commercial industry [28]. For example, an array of nodes can be distributed in an

office building to measure temperature and human traffic in order to smartly conserve

11 11

energy used for heating and lighting, which account for more than 50% of electricity

consumed by office environments [29]. A related case study is given in [30].

As depicted in Figure 1, a sensor node is composed of four basic components: a

sensing unit, a processing unit, a transceiver unit, and a power unit [31]. The sensing unit's

sensor collects observed phenomena (temperature, humidity, pressure, etc.) as analog signals,

and the analog to digital converter (ADC) digitizes the signals so that they can be processed.

The transceiver links a sensing node to the other nodes in its immediate area so that data can

be exchanged over the multi-hop network. Routing and collaboration decisions are

calculated in the processing unit. The most important component, however, is the power

unit. It governs all of the sensor's processes and is most often the leading hardware

constraint.

Power Unit
Power

Generator

Transceiver
Processor

Storage
Sensor ADC

MobilizerLocation Finding
System

Processing UnitSensing Unit

Figure 1: Components of a sensor node [31]

Figure 1: Components of a sensor node

When being used for more specialized applications, sensor nodes can be made to

include several other components (dotted outline in Figure 1). Miniature solar cells, vibration

energy harvesters or other energy scavenging methods help reduce the power constraint and

extend sensor persistence. Mobilizers allow a sensor to physically relocate itself (usually by

crawling, rolling, or bounding). A location finding system enables a sensor to calculate its

12 12

position relative to other sensors, and when used cooperatively, can help localize the source

of phenomena (such as the position of a nearby moving tank).

The key to a WSN's success is a robust communication foundation. Depending on

the sensing task, nodes may need to use protocols that combine power and routing

awareness so that the least amount of power and bandwidth are used regardless of the

amount of data that needs to be relayed [31]. Proactive [32] and reactive [33] routing

algorithms can be applied to suit the type of sensor network so that the nodes can still

cooperate effectively despite transient link states within a multi-hop network environment.

 There are times when an end-user will need to retrieve more specific data from

particular sections of a WSN or from several independent WSNs. Keeping this in mind, the

authors of [34] address the importance of sharing sensor-derived data with external users.

They propose a sensor network registry architecture whose usefulness they liken to a good

web search engine that presents the most relevant results to a user query. When searching

for a specific sensor network, there are two preferred methods: information gathering by

collection, and information gathering by registration. The former is akin to a web crawler –

an automated software agent that methodically searches web pages and pulls data to create

entries for a search engine index. The latter (and their preferred) method takes into account

the independence of sensor networks by allowing them to push data according to their own

access policies.

 According to their architecture, a sensor network registry would reply to a user’s

query and would be controlled by a sensor network operator (who would essentially establish

general user permissions). Information about the sensor network is stored within the registry

and is fetched by a query processor. Park, et al. insist that the query-reply process is relatively

13 13

simple, but instead the difficulty lies in determining which information the sensor network

registry should maintain, and how this information should flow within the system.

 Their approach to determining the appropriate information to be stored is based on

the types of queries that can be posed. By examining all 31 combinations of Who, What,

When, Where, Why, and How (5W1H), and their significance to the user and operator, the

authors formally establish a set of usable query parameters. Their parameters – operator,

location, role, and sensor type – form the basis for an expandable “query grammar.” In this

way, sensor network queries can be tailored to be as general or specific as necessary, and the

best possible answers can be provided.

2.5 Multisensor Data Fusion

Multisensor data fusion is the application of processing and reduction techniques to

combine data from multiple sensors and various knowledge sources. The objective is to

provide a better understanding of the phenomena under examination than what could be

achieved by the use of a single sensor [35]. In the early 1980’s, the U.S. military recognized a

need to automate information processing for location, tracking, and identification of military

entities such as tanks, missiles, and aircraft. By 1986 the Joint Directors of Laboratories

(JDL) Data Fusion Working Group was formed to establish a fusion process model and a

common language for military researchers and system developers to share.

The JDL data fusion process model shown in Figure 2 identifies five levels of data

refinement that are applied iteratively; each level builds on the previous. From sensory data,

entities are identified and then compared to reveal any relationships among them.

Relationships form the basis of hypotheses which can be used to fulfill simple objectives

(such as enhancing noisy surveillance footage) to more complex objectives (such as

14 14

predicting enemy intent). Borrowing some of the ideas established by the JDL model, several

other data fusion models were developed in the years following to fulfill military and non-

military data processing needs [36], [37], [38]. Some of these needs include target tracking

[39], autonomous robotics [40], and biomedical imaging [41].

Source
Pre-Processing

Level One
Object

Refinement

Level Two
Situation

Refinement

Level Three
Threat

Refinement

Level Five
Cognitive

Refinement

Human
Computer
Interaction

Source

Level Four
Process

Refinement

Support
Database

Fusion
Database

Database Management System

Figure 2: The JDL Fusion Model [42]

Figure 2: The JDL Fusion Model

Although data fusion models specify the order and types of processes required for

various data fusion applications, data fusion architectures are selected to specify how the

sensing nodes will share their data, where the data is processed, and to what degree data is

reduced. Traditionally, military data fusion architectures have been centralized – the sensing

nodes transmit their raw data to be processed and reduced at a central location. Centralized

fusion architectures usually demand a large amount of bandwidth. Decentralized

architectures implement some data reduction (such as coordinate translation and image

preprocessing) at the sensing nodes prior to transmitting. Although the raw data is reduced

to state vectors, thereby reducing the bandwidth requirement, all subsequent processing is

15 15

forced to rely on approximations made at the sensing nodes. Hybrid fusion architectures

offer flexibility to choose a centralized or decentralized approach in response to network,

data fidelity, or processing constraints. Hybrid architectures offer the flexibility of being able

to command sensors to send raw data or reduced data as the situation requires. Thus, the

bandwidth needed to transmit data and the power required to process data would increase

and decrease appropriately. However, this flexibility comes at the price of process

monitoring overhead which is required to determine when either operating mode is

appropriate [42].

Multisensor data fusion yields several qualitative and quantitative benefits. Generally,

an array of sensors provides extended spatial and temporal coverage over an area or a

phenomenon. As a result, the probability of successfully detecting objects and events is

increased. Joint information from multiple sensors reduces the set of hypotheses about a

target or event, thus reducing ambiguity [43]. Particularly among sensors of the same type,

multisensor data fusion results in improved resolution.

In order to reap the benefits of multisensor data fusion, there are several things to

consider - most of which should be introduced early on in the system design phase. Some of

these considerations include:

• There is no substitute for a good sensor.

• Downstream processing cannot make up for errors (or failures) in upstream

processing.

• There is no perfect fusion algorithm that is optimal under all conditions.

• The data fusion process is not static but rather iterative and dynamic, and continually

in need of refinement [43].

16 16

Regardless of the size or application intended for a data fusion system, these and other ideas

must be seriously considered to avoid inaccurate estimation and poor data interpretation.

2.6 Summary

 In this chapter, we provided background information for several key concepts that

related to our research. We began with a brief history behind the cognitive radio and

cognitive network. Then, we compared various node localization approaches used today. We

also surveyed research within the wireless sensor networks and multisensor data fusion

fields.

17 17

III. Methodology

3.1 Introduction

 The purpose of this chapter is to describe the tools and processes used to conduct

our experiments. Although we performed experiments using two different approaches – a

real-time approach and a post-processing approach – only the latter will be discussed here

since it is the more mature of the two. However, we address the real-time approach in

Appendix B and offer some suggestions to improve it.

In Section 3.2 we introduce our major tools: the GNU Radio Development software

and the Universal Software Radio Peripheral (USRP). Section 3.3 introduces our data

collection and data reduction methodologies. The hardware characterization procedure we

used prior to experimenting is outlined in Section 3.4. Our node localization algorithm is

explained in Section 3.5. And in Section 3.6 we provide details regarding our collaboration

experiments.

3.2 The GNU Radio Development Software and Universal Software Radio Peripheral

 Together the GNU Radio development software and USRP software-defined radio

form the core components of our research implementation. In the following sections we

give a brief history of both components, and explain two important parameters that

governed how RF signals were captured – the decimation rate and the Fast Fourier

Transform (FFT) size.

3.2.1 GNU Radio

GNU Radio is a free [44] software development toolkit specializing in signal

processing and is maintained by Eric Blossom. It was originally conceived as a means to

acquire high-definition television signals. Over time, it has evolved into an empowering tool

18 18

that helps people learn about and explore new ways of using the electromagnetic (EM)

spectrum [45]. In the four years since its creation, GNU Radio has grown into a widely used

cross-platform package that supports software-defined radio systems. Part of its success is

derived from a flexible, process block abstraction which allows software developers to

manipulate signals by appending a series of individual signal processing events. Written

primarily using the Python programming language, GNU Radio applications declare the

linkages between signal processing events (also called signal processing blocks). The signal

processing blocks themselves and performance-critical algorithms are implemented in the

C++ programming language. Typically they are imported at the very beginning of a Python

script. See Appendix A for a short tutorial of the coding structure.

3.2.2 USRP

The GNU Radio project developed the USRP as a relatively low cost ($800) software

radio under the direction of Eric Blossom and a team led by Matt Ettus [45], [46]. It too

gained wide adoption through flexibility – offering a hardware platform that is easily

reconfigured by adding or removing interchangeable daughterboards, each designed to

operate within specific bands of the EM spectrum (DC to 5.9 GHz). For our research we

used the USRP version 1 hardware as shown in Figure 3. Receiver and transmitter

daughterboards are affixed to the USRP motherboard which houses four analog-to-digital

converters (ADCs) and four digital-to-analog converters (DACs), and a field-programmable

gate array (FPGA) for high-speed floating point signal processing. A USB 2.0 controller is

the sole interface between the radio hardware and the radio software (which resides on a

host computer). These components are identified in Figure 4 and listed in more detail in

Table 1 and Table 2.

19 19

Power supply input USB 2.0 port

RF ports

Figure 3: USRP version 1 hardware enclosure displaying external interfaces

Figure 3: USRP version 1 hardware enclosure displaying external interfaces

TVRX

Basic TX interface

FPGA

Basic RX interface
USB controller

A/D
D/A
chip

Figure 4: Top-down view of URSP version 1 main board and daughterboard components

Figure 4: Top-down view of USRP version 1 main board and daughterboard components

20 20

Table 1: USRP Motherboard specifications

Table 1: USRP Motherboard specifications [46]

Table 2: USRP Daughterboard specifications (partial list)

Table 2: USRP Daughterboard specifications (partial list) [46]

3.2.3 Decimation and FFT size

The decimation rate and the FFT size are two fundamental parameters that affect

how signal data is represented before they are manipulated by a Python script. But before we

explain these parameters, we must discuss the USRP's sampling process. All of the USRP

components are tied to the FPGA as shown in Figure 5, and are driven by the

motherboard’s clock which operates at 64 million cycles per second (MHz). Analog signals

received by a daughterboard are streamed to the ADC where they are digitized. Once

digitized, the stream of signal bits is passed through the FPGA to the USB 2.0 controller.

Finally, the signal bits are streamed via the USB 2.0 cable to the host computer where they

are manipulated.

 USRP Motherboard

FPGA
A/D
D/A

Interface
Power Requirements

High-speed USB 2.0, 480 Mb/s
6 Volts DC, 0 ~ 3.5 Amps

2 1/8 " x 7 " x 8 1/4 " (with enclosure)
1 1/2 " x 6 1/4 " x 7 " (without enclosure)

Dimensions

EP1C12 Q240C8 Altera Cyclone
4 x AD9862 12-bit, 64 MS/s, Bandwidth: 32 MHz

4 x AD9862 12-bit, 128 MS/s, Bandwidth: 32 MHz

Name Operating Band Notes
Receive only
No mixers, filters, or amplifiers present
Transmit only
No mixers, filters, or amplifiers present
Receive only
Automatic Gain Control
Based on standard TV tuner module

Basic RX

Basic TX

TVRX

 USRP Daughterboards (partial list)

1 MHz - 250 MHz

1 MHz - 250 MHz

50 MHz - 860 MHz

21 21

Receive
Daughterboard

Receive
Daughterboard

Transmit
Daughterboard

Transmit
Daughterboard

FPGAFPGA

ADC

ADC

ADC

ADC

DAC

DAC DAC

DAC

FX2
USB 2

Controller

Figure 5: Block diagram of the USRP hardware interfaces [47]

Figure 5: Block diagram of the USRP hardware interfaces

The decimation rate d is a user-defined, positive integer which specifies the sampling

rate that the FPGA applies to a received signal. This rate is a fraction of the ADC's 64 MHz

sampling rate and is usually specified as a base-2 value (2, 4, 8, etc.). Thus, a decimation rate

of 4 instructs the FPGA to sample a digitized received signal at a rate of:

64×106cycles/sec
4 cycles/sample

=16×106samples/sec

(1)

which is more commonly written as 16 Mega-samples/sec (MS/s). Alternately stated, given a

decimation rate d = 4, the FPGA will take every fourth sample of a signal that was originally

captured at 64 MS/s and discard the other samples. What results is a digitized version of the

received analog signal that has been effectively sampled 16 million times per second.

 The FFT size is a base-2, positive integer that affects a sampled signal in both the

time and frequency domains. In the time domain, the FFT size specifies the number of samples

to be taken from the input signal. This same value also defines the number of frequency bins a

22 22

digital signal will be represented by when it is converted to the frequency domain. It is most

commonly represented as N in the discrete Fourier transform (DFT) equation:

(2)

where

X(m) = the mth DFT output
x(n) = the discrete time signal

N = number of frequency bins, and the number of samples
of the discrete time signal

The ADC (which deals with received signals in the time domain) uses the FFT size to

determine the number of samples to take of the input signal, whereas the decimation rate is used

to specify the rate at which those samples are taken. In our data manipulation code (which

primarily deals with received signals in the frequency domain), the FFT size determines the

number of frequencies used to represent the received signal as it is transformed into the

frequency domain.

For the purposes of our research, we needed to find a decimation rate and an FFT

size that would represent the received signals in sufficient detail for manipulation. Our

general goals were to sample incoming signals quickly enough to avoid aliasing, and to make

the frequency bins sufficiently narrow. Together, these goals intended to ensure that the

received signals were not misrepresented so that an automated algorithm could accurately

identify occupied stations (as explained in Appendix B).

3.2.4 Determining the Decimation Rate and FFT Size

In many of the GNU Radio scripts included with the development package, the

default decimation value is preset to 8. Using the default value as a starting point, we began a

comparison of different decimation rates given an arbitrary, fixed FFT size of 512 points. To

23 23

make our comparison, we tuned a USRP to a center frequency of 92 MHz and observed the

resulting power spectral density (PSD) plots given decimation settings of d equal to 4, 8, and

16. Figure 6 depicts the time-averaged PSDs for each of the three settings. One of the first

observations we made was that the widths (viewable bandwidths) of the plots vary. As the

decimation rate was increased, the viewable bandwidth of the USRP decreased. For example,

given a decimation of 4, the viewable bandwidth is 16 MHz ([84, 100] MHz), whereas for a

decimation of 16, the viewable bandwidth is only 4 MHz ([90, 94] MHz). Just as the

decimation rate affects the rate of sampling in the time domain, it also affects the sampled

bandwidth in the frequency domain by taking a fraction of the maximum viewable

bandwidth (as set by the USRP sampling rate). Thus a bandwidth of [-Fs, +Fs] is reduced to

[-Fs/d, +Fs/d].

84 86 88 90 92 94 96 98 100

-40

-20

0

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

Decimation Value Comparison -- N = 512 -- d = 4, 8, 16
Average Received Power

84 86 88 90 92 94 96 98 100
0

20

40

60

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

84 86 88 90 92 94 96 98 100
0

20

40

60

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

d = 4

d = 8

d = 16

Figure 6: Decimation value Comparison for d = 4, 8, 16 (Note: The sharp peak occurring
at 92 MHz for the d = 4 case may be the result of a nearby electronic device or an air
conditioning unit. During our research we observed that these devices tend to emit energy
around the upper portion of 91 MHz.)

Figure 6: Decimation value comparison for d = 4, 8, 16

24 24

Additionally, Figure 6 shows that the shapes of the plots vary in two important ways.

First, the level of detail given by each plot increases as the decimation value increases, which

can be partially attributed to the fact that regardless of the length of the x-axis, each case is

represented by a fixed number of points. Although the upper plot gives a cursory view of

how many stations may exist between a much larger band of frequencies, it does not capture

some of the nuances that would help us precisely determine where stations begin and end.

Second, we see that the shape of the noise floor is more prominent in the 'd = 8' condition

(as indicated by the arrow). By raising the middle 80% of the bandwidth (by 10 dB) our

automated station identification algorithm (as described in Appendix B) would be adversely

affected because it relies on a comparison between a station's supposed average power

(across its bandwidth) and the total average power contained in the viewable bandwidth.

Thus, the stations residing on the edges of the viewable band would be unfairly dwarfed and

ignored. Given these observations, we decided to select 16 as our decimation value, and to

continue to use it as we explored our choice for an appropriate FFT size.

Using a similar approach, we ran trials using FFT sizes above and below our starting

point. Figure 7 depicts time-averaged PSD plots for cases where N equals 256, 512, and

1024. The most significant observations we made were influenced by the levels of detail

given by each plot. As expected, the larger the FFT size, the greater the detail that can be

displayed. For example, the first plot depicts a general outline of the occupied channels for

N equal to 256. Although this plot is useful for confirming the existence of strong radio

stations, it would be difficult to discern the full widths of particularly weak channels, as is the

case at 91.3 MHz. By doubling the number of frequency bins used to represent the signal,

the 'N = 512' case shows improvement in the level of detail that describes where channels

begin and end, as well as the upper and lower sideband widths (as seen at 92.3 MHz – an

25 25

HD radio station). The bottom plot of Figure 7 shows the 'N = 1024' case, which does not

appear to be a significant improvement over the previous. The additional data points provide

more detail mostly to the noisy areas, but this offers us no additional value. As a result, we

decided to use an FFT size of 512.

Figure 7: FFT Size Comparison for N = 256, 512, 1024

Based on what we observed in Figure 6 and Figure 7 we decided to use a decimation

of 16 and an FFT size of 512. All subsequent tests and experiments operated under these

two parameter settings.

3.3 Data Collection and Data Reduction Methodologies

Our post-processing approach organized the data collection and data reduction

procedures as two distinct steps. First the USRP hardware was used to capture signal data

using a GNU Radio Python script. Then, our MATLAB script was applied to convert,

calculate, and extract RSSI information from the signal data. The algorithms found in the

usrp_capture_nsamples.py and Data_to_PSD.m scripts are explained here.

90 90.5 91 91.5 92 92.5 93 93.5 94
0

20

40

60

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

FFT Size Comparison -- d = 16 -- N = 256, 512, 1024
Average Received Power

90 90.5 91 91.5 92 92.5 93 93.5 94
0

20

40

60

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

90 90.5 91 91.5 92 92.5 93 93.5 94
0

20

40

60

Frequency (MHz)

A
vg

 P
ow

er
 (d

B)

N = 256

N = 512

N = 1024

Figure 7: FFT Size Comparison for N = 256, 512, 1024

26 26

Also, we describe an unexpected problem that we encountered during initial data collection

attempts, and give the corrective solution we applied to eliminate its effects.

3.3.1 USRP Data Collection

The usrp_capture_nsamples.py script was packaged with the GNU Radio

development software. The purpose of the script was to use the USRP hardware to capture

complex signal data and then store them into a binary-encoded file according to the

arguments it specified: decimation rate, FFT size, tuning frequency, and file name. Since the

script performs only one iteration each time it is executed, we needed to find a way to run as

many successive iterations as necessary to continuously capture RF signals. Borrowing

heavily from a wrapping script created by Reginald Cooper [48], we implemented a process

that imported the signal capture program as a function, so that it could be called repeatedly

until interrupted by the user. The pseudo code of Figure 8 shows that during each iteration,

a new file name was formatted to include the current system time (as Epoch time), and an

iteration count value as in: data_1231832819.02_991.bin. Given our standard

FFT size of 512 points, each data file was approximately:

(3)

or 4 kilobytes in length.

1
2
3
4
5
6
7
8
9

while iteration_index >= 1

store returned values to file

increment iteration_index

declare USRP parameters (decim, FFT_size, tune_freq)
create filename as file_path + 'data_' + current Epoch time + '_' + iteration_index + '.bin'

call usrp_capture_nsamples

Figure 8: Pseudo code for data collection wrapper function

Figure 8: Pseudo code for data collection wrapper function

27 27

Figure 9 depicts signal data for one capture iteration as a pair of in-phase and

quadrature phase signals that are 128 microseconds in duration. The signal duration can be

verified using the following expression:

512 samples × � 64
MS
s

 ×
1
16

 �
-1

× 2 = 128 μsec

(4)

where the in-phase and quadrature phase sampling are treated as independent, interleaved

events [49], hence the factor of two.

0 20 40 60 80 100 120
-2000

0

2000
In-phase Time-Domain Signal

Time (µsec)

A
m

pl
itu

de
 (U

ni
ts

)

0 20 40 60 80 100 120
-2000

0

2000
Quadrature Time-Domain Signal

Time (µsec)

A
m

pl
itu

de
 (U

ni
ts

)

Figure 9: Typical in-phase and quadrature received FM signals

Figure 9: Typical in-phase and quadrature received FM signals

After the desired number of iterations are completed (usually determined by elapsed

time), what remains is a folder of identically-sized signal data that is ready for reduction. It

should be noted, however, that the data collection folders can grow very large (as in number

of files) after only several minutes of data collection. For example, a 30-second collection

period yields nearly 500 files. Data collections lasting several minutes could not feasibly be

28 28

transferred to another workstation for data reduction because more files require more pre-

write disk activities. Thus, we forced fewer files to be created by adding a brief sleep period

(0.15 sec) at the end of the capture iteration. This helped to reduce the file creation rate to

approximately 140 files per 30-second period, or about 4.7 files per second.

3.3.2 MATLAB Data Reduction

Our data reduction script was designed to take the signal data files collected by the

USRP and reduce them to a time-varying list of received power values given a station of

interest. First, the binary files were read and their complex signal data were extracted as two

separate signals - the real (in-phase) and imaginary (quadrature phase) parts. As given in

Figure 10, the reduction process continued with the creation of a whole signal (represented

in rectangular form), which was transformed into the frequency domain by applying the Fast

Fourier Transform function. Once the signal was converted to a frequency domain

representation, a power spectral density (PSD) was calculated in order to determine the

received power at each frequency. Line 4 in Figure 10 merely shifts the spectral

representation from a [0, 2π] display into a more intuitive [-π, +π] display.

1 whole_signal = real_part + (j * imaginary_part)

2 whole_signal_FFT = fft(whole_signal) / length(whole_signal)

3 whole_signal_PSD = abs(whole_signal_FFT)2

4 whole_signal_PSD = fftshift(whole_signal_PSD)

Figure 10: Pseudo code that converts a complex signal (written in rectangular form) and
transforms it into a PSD using the magnitude squared of the Fourier transform

Figure 10: Pseudo code that converts a complex signal into a PSD

29 29

For each file, the conversion process was performed by using the expression for the

DFT (as given in Section 3.2.3), and an expression for the power spectral density:

XPSD(m)=|X(m)|2

(5)

where the magnitude of the DFT signal is taken and then squared. Pictorially, the

transformation is demonstrated in Figure 11.

|FFT|2

Time (μsec)

A
m

pl
itu

de

92.0
Freq (MHz)

90.0 94.00 128

Figure 11: Complex time domain signals are converted to a power spectral density in the
frequency domain using the magnitude-squared of the signal’s Fourier Transform..

Figure 11: Complex time domain signal conversion to a PSD via the Fourier Transform

Using a PSD calculated from a single file made it easy to identify some of an FM

station's features such as peak power. When combined with the PSDs of all subsequent files

it became possible to see how the strength of a station (henceforth, channel) fluctuated over

time. When viewed as an animation, the time-varying PSD revealed pervasive noise that also

fluctuated over time. The additive effects of the noise made the PSDs appear jagged, thereby

making it difficult to precisely identify the lower and upper frequencies of the radio

channels. In order to minimize these effects we appended a process that took the average of

the PSDs at regular intervals in time. By using a time-averaging process, as shown in Figure

12, the resulting PSD shape became smoother, and radio channels were more readily

identified. (This also made the automated station detection algorithm easier to implement.)

30 30

(PSD)i
1
N Σ

(N-1)

i = 0

PSD0

PSD1

PSD2

|F
FT

|2

92.0
Freq (MHz)

90.0 94.0

Figure 12: Several noisy PSDs are averaged over time to produce a less noisy PSD – a
spectral summary – from which channels can be more readily identified.

Figure 12: Several PSDs are time-averaged to reduce noise

We manually extracted received signal data by first using the time-averaged PSD to

note the lower and upper frequencies that defined a channel of interest. Then, the frequency

values were translated into start and end indices for a subset of columns within a time-

averaged-PSD matrix. Using the column indices, we summed the received power values

along each row of the matrix. Finally, what resulted was a time-varying vector of channel

RSSI values.

3.3.3 Unexpected Problem: Ringing

Only after we began the data reduction process in MATLAB were we able to identify

a problem in the data collection process. As depicted in Figure 13, there were some instances

in which the complex signals we subject to an abnormal ringing effect within the first 23

samples (or 5.75 µsec) of data. In the frequency domain, these large, narrow impulses

transformed into broad spectral densities that dwarfed all other PSDs. Given the transient

nature of the ringing and their presence only at the beginning of some sampling iterations,

we suspected that somewhere in the USRP a power surge occurs when it is commanded to

start sampling (via the usrp_capture_nsamples script). Our solution was to extend

the number of samples we would normally collect by specifying an intermediate FFT size of

31 31

512 + 23 = 535 points in the data collection code, and then we removed the first 23 samples

for all signal data files as they were imported into MATLAB. The FFT size used in the data

reduction code remained unchanged.

0 20 40 60 80 100 120
-1

0

1 x 104
In-phase Time-Domain Signal with Ringing

Time (µsec)A
m

pl
itu

de
 (U

ni
ts

)

0 20 40 60 80 100 120
-1

0

1 x 104
Quadrature Time-Domain Signal with Ringing

Time (µsec)A
m

pl
itu

de
 (U

ni
ts

)

Figure 13: In-phase and quadrature received FM signals with ringing

Figure 13: In-phase and quadrature received FM signals with ringing

3.4 Hardware Characterization

 Aside from external sources of measurement error, particularly multipath fading and

shadowing for RSSI-based applications, it is also important to recognize internal sources of

error. Energy-based localization techniques greatly depend on how closely a sensor set

responds given the same input conditions [19]. The RSSI technique we implemented is of no

exception. Thus, we developed a procedure that helped to determine the uniformity of our

sensing nodes. Using the same input signal applied to each sensor, we were able to make a

comparison by overlaying their frequency responses onto a single plot.

32 32

The hardware set up for our characterization procedure is shown in Figure 14. Each

sensor was given a -3 dBm (158.3 mV0-peak) sine wave from a signal generator (Agilent

E4438C) via a SubMiniature version A (SMA) cable – first to the Basic RX port and then to

the TVRX port. The option to connect all sensors to the signal generator simultaneously

using SMA splitters was deferred in favor of connecting each radio one at a time. This

decision helped to ensure a more uniform received signal among all sensors. It also

eliminated the need to characterize losses across each splitter – a time-consuming process.

USRP

Host
Computer

Signal
Generator

SMA
Cable

USB
Cable

Figure 14: USRP hardware characterization setup

Figure 14: USRP hardware characterization setup

In anticipation of outdoor experiments, we centered a 4 MHz band of frequencies

about 92 MHz to perform our characterization test because it was the least crowded by local

radio stations. The -3 dBm signal was swept through nine evenly spaced frequencies within

this band (90, 90.5, 91 MHz, etc.) and dwelled at each frequency for one minute before

advancing to the next. Figure 15 depicts the power received by one of our software radios

over time (increasing from right to left), and across the band of frequencies (increasing from

front to back). Each sample was obtained using a decimation rate of 16 cycles per sample

and an FFT size of 512 points.

33 33

Time (minutes)

Frequency
(MHz)

Received
Power

(Units2)

USRP Hardware Characterization – F15 TVRX
Received Power over Time

Figure 15: Time-varying plot of the characterization signal’s PSD as received by the USRP
labeled F15; arrow indicates signal energy shifted in frequency due to clipping effects

Figure 15: Time-varying plot of the characterization signal’s PSD

Once all of the radios finished sampling the characterization signal, the sample data

for both their Basic RX and TVRX daughterboards were reduced by extracting only those

areas where the swept signal was present – the gray pillars of data in Figure 15. On average,

each pillar within the sweep band formed a channel approximately 23 kHz wide for the Basic

RX daughterboards, and approximately 70 kHz wide for the TVRX daughterboards. The

channels occurring at 90 MHz and 94 MHz were not relied on because they were subject to

clipping effects. Additionally, the signal energy intended for 94 MHz was displaced to the

other side of the viewable band. This is true for all sample data sets, and is highlighted in

Figure 15 with an arrow. Subsequent activities were designed to avoid the bounding

frequencies.

34 34

89 90 91 92 93 94 95
0

2

4

6

8

10

12 x 105
USRP Characterization -- Linear Comparison -- Basic RX

95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

U
ni

ts
 2)

89 90 91 92 93 94 95
0

10

20

30

40

50

60

70

USRP Characterization -- Log Comparison -- Basic RX
95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

dB
)

89 90 91 92 93 94 95
0

2

4

6

8

10

12 x 106
USRP Characterization -- Linear Comparison -- TVRX

95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

U
ni

ts
 2)

89 90 91 92 93 94 95
0

20

40

60

80

USRP Characterization -- Log Comparison -- TVRX
95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

dB
)

F117
F15
F16
F22
F35

89 90 91 92 93 94 95
0

2

4

6

8

10

12 x 105
USRP Characterization -- Linear Comparison -- Basic RX

95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

U
ni

ts
 2)

89 90 91 92 93 94 95
0

10

20

30

40

50

60

70

USRP Characterization -- Log Comparison -- Basic RX
95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

dB
)

89 90 91 92 93 94 95
0

2

4

6

8

10

12 x 106
USRP Characterization -- Linear Comparison -- TVRX

95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

U
ni

ts
 2)

89 90 91 92 93 94 95
0

20

40

60

80

USRP Characterization -- Log Comparison -- TVRX
95% Confidence Intervals

Frequency (MHz)

Ch
an

ne
l R

SS
I (

dB
)

F117
F15
F16
F22
F35

Figure 16: USRP Hardware Characterization Linear and Log-Scale Plots: Basic RX
daughterboard (top row), TVRX daughterboard (bottom row).

Figure 16: USRP hardware characterization: linear and log-scale plots

After computing the average received signal power within all channels (as in Section

3.3), we were able to compare the channel RSSI values for both types of daughterboards by

creating the plots of Figure 16. The linear scale plots of Figure 16 show that the channel

RSSI values for the TVRX daughterboards are, on average, an order of magnitude greater

than those of the Basic RX daughterboards. In the log-scale plots, this order-of-magnitude

difference is represented as a 10 dB gain. The TVRX daughterboard gains are due to their

built-in RF front end circuitry which amplifies received signals as they are translated to an

intermediate frequency [50]. (The Basic RX daughterboard does not have an RF front end --

see Table 2.) We believe that because of manufacturing tolerances for the analog front end

components, gains are not applied identically between the TVRX daughterboards, hence the

slight variation in the TVRX linear-scale plot. Overall, Figure 16 reveals that the respective

daughterboards respond similarly (within 0.46 dB) when given the same input signal.

35 35

Despite the general variation of its mean values, the TVRX daughterboard was

selected as the primary interface for conducting our experiments. Since gains are applied by

an RF front end, sensor arrays based on the TVRX daughterboard could be made to

encompass a larger search area, thereby affording some additional topology design flexibility.

3.5 RSSI Localization Implementation

In [9] Martin and Thomas derived a new sensor localization algorithm that applies a

Maximum Likelihood (ML) approach to estimate a transmitter's position, orientation, beam

width, and transmit power using RSS measurements. A large portion of their paper's focus

was centered on transmitter directionality, as previous research generally ignored non-

uniform antenna gain patterns. To demonstrate their algorithm, they created a MATLAB

simulation which modeled sensing and transmitting nodes that operated within a log-normal

fading environment, and then applied their ML approach to various distributions of wireless

nodes. Although we were unable to devise a suitable directional antenna that functioned

within the FM band, we were fortunate to be able to borrow the portion of their code

(findomni2.m) that implemented their localization algorithm against omnidirectional

nodes (which they used for performance comparisons). Here we will discuss how their

localization algorithm works, and address two considerations we made prior to designing our

experiment.

3.5.1 RSSI Localization Algorithm

In general, the localization algorithm for omnidirectional nodes uses the same

approach as for directional nodes. Beforehand, all nodes are arranged within a rectangular

coordinate plane. The sensing nodes (whose positions are known) observe the received

power from a transmitter located at some unknown point in the plane. Given a similar

36 36

scenario, the findomni2 function takes the following arguments: each sensing node's x

and y coordinates, the RSSI value observed by each sensing node, and two vectors that

define the boundaries and number of points within a rectangular search space (one vector

for each dimension). As an example, Figure 17 depicts a search space that has been defined

around a simple topology of nodes.

Figure 17: Example node localization search space

Figure 17: Example node localization search space

Using the observed RSSI values and the locations of the nodes, every point in the

grid is evaluated to identify the likelihood that a transmitter resides there. Two types of

calculations are performed at each grid point, one at a time -- preliminary calculations and

likelihood calculations. The preliminary calculations identify the mean distances (and mean

squared-distances) between all sensing nodes and the current search point, the variance of

the sensors' distances to the current search point, the average RSSI value received by the

sensor network, and the mean power-distance product - an average of the power received by

each sensor, scaled by their separation distance to the current search point.

37 37

The likelihood calculations are performed in two phases. First, estimates of the best

possible transmitter characteristics are calculated, which assumes that a transmitter exists at

the current search point. Then, an error is calculated between the supposed transmitter

characteristics (what was observed) and the best possible transmitter characteristics (what

would have been observed). These calculations (as derived in [9]) are expressed as:

(6)

(7)

(8)

where

P0best= the transmitter power that would have been observed

npbest = the calculated path loss exponent

fiterror = the normalized difference between the power observed and the
power that would have been observed

p = the power received by the sensing nodes (arranged as a
vector)

d = the distances between each node and the current search point
(arranged as a vector)

The computed error is a direct representation of the likelihood that a transmitter (with

similar observed properties) exists at the current search point. After all search points have

been evaluated, the computed error values form a matrix whose entries coincide with the

search grid. Therefore, the search point that bears the lowest error value represents the most

likely position of the transmitter. Figure 18 illustrates a sample fit error matrix taken as a

surface and viewed from the side.

38 38

Figure 18: Example fit error surface viewed from the side

 3.5.2 Usage Considerations

Before integrating the localization algorithm into our experiments, we made note of

some usage considerations. Our first concern regarded how fine the search grid would be

"drawn." Having fewer points meant having fewer cumulative calculations. However a fairly

coarse grid would yield poor position estimate resolution. On the other hand, a very fine grid

would greatly increase the search space resolution, but may do so needlessly since RSSI

measurements can fluctuate greatly. Thus, we resolved to define our search grid points to be

evenly separated by 1 foot in both directions.

Our second concern regarded sensor placement within the search space. The grid in

Figure 17 does not include points where either the sensors or, more importantly, the

transmitter lie. In fact, a search grid of this type would distort position estimates as none of

the possible positions are correct solutions. Instead we resolved to design our experiment

such that the transmitters would be placed on top of a grid point. In this way, we could

20 30 40 50
0

10

20

30

Sample Fit Error Surface
Side View: Topology South to North

X Coordinate (feet)

Fi
t E

rr
or

Least likely TX
positions

Most likely TX
position

Figure 18: Example fit error surface viewed from the side

39 39

accurately determine whether a position estimate was correct, and if not, calculate a valid

position error. Although the sensor positions need not coincide with the search grid, we

designed our sensor topologies to have any given sensor placed no farther than half a unit

(or half a foot) away from a search point, in both the x and y directions.

3.6 Collaboration Experiments

Our research intended to use real-world experimentation to demonstrate

collaborative localization, and thereby validate (or challenge) simulation results based on the

quality of their position estimates. The nature of our experiment design was influenced by

the tools we had available, particularly the number of software-defined radios we could use.

In this section, we explain how we applied a time shift concept to amplify our post-

processing approach, which turned our seemingly small number of nodes into a flexible

network of 21 collaborative topologies. However, we also share the measures we put in place

to help ensure time shift validity. Then, we describe the conditions of our experiment during

the execution phase. Finally, we discuss how Martin and Thomas' simulation was configured

in order to repeat our real-world experiments under a simulated RF environment.

3.6.1 Overview

We had six USRP software-defined radios available to us. They were divided into

two roles; five of the radios were declared sensing nodes, and one radio was declared a

transmitting node. The sensing nodes ran the usrp_capture_nsamples.py script to

collect signal data. And the transmitting node broadcasted audio signals using an existing FM

transmission program (fm_tx4.py) that came preloaded with the GNU Radio

development package. To differentiate the USRPs, the sensing nodes were named after U.S.

military F-series aircraft - "F15," "F16," "F22," "F35," and "F117" - while the transmitting

40 40

node was designated "TX." When referred to in our topology legend in Appendix C, the

sensing nodes are identified according to a number, from one through five, respectively. For

example, "F15" appears as "1," "F16" appears as "2," and so forth.

3.6.2 Time Shift Concept

The number of SDRs on hand was a strong limiting factor that affected many facets

our design. Our sensor set would determine the spatial diversity, reliability, and performance

of our topologies. Having too few sensing nodes would severely limit the number of shapes

and sizes of our sensing topologies. Also, sparse topologies would be more likely to suffer in

the event of a poorly performing node. Thus, we needed to find a sensible way to expand

our design options so that we could increase the likelihood of achieving sensible results.

Unlike the real-time approach, which interleaves the data collection and reduction

processes with every iteration, the post-processing approach separates these events into two

distinct phases. This distinction provided an opportunity well-suited for experimental

analysis. Since data collection and data reduction did not occur concurrently, we were able to

conduct multiple small-topology experiments at different points in time. Then, we combined

the data from the experiments as if they occurred concurrently. Finally, we applied our data

reduction process to the accumulated data. For example, sensing nodes were arranged as

shown in Topology A in Figure 19 and collected signal data from a transmitter located at a

nearby position, unknown to them. Then, the sensing nodes were rearranged to observe the

same transmitter from different locations (as depicted in Figure 19, Topology B).

41 41

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

USRP Sensor Topology A

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

USRP Sensor Topology B

1

2

3

4

5

1

2

3

4

5

Figure 19: Sensor configurations used for time shift

Figure 19: Sensor configurations used for time shift

By combining the signal data from our five sensing nodes, that sensed the same

transmitter (each from two independent locations), we essentially emulated a ten node

topology that acted upon two transmitters (separately). Figure 20 depicts our combined

sensor topology, and overlays the locations where we placed our transmitter node. (See

Figure C1 for an enlarged topology legend that shows the sensor identities.)

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

USRP Experiment Topology

Figure 20: Complete sensor topology as a result of applying time shift

Figure 20: Complete sensor topology as a result of applying time shift

42 42

The flexibility of the post-processing approach allowed us to capitalize further on the

time shift concept. By excluding the data collected by some sensors, we could select a

number of sub-topologies from our emulated set of 10 nodes. For example, Figure 21 shows

how a Rectangle topology was formed when we excluded signal data from six nodes.

Repeating this process, we were able to identify 21 sub-topologies that varied by the number

of nodes, shape, and size (as in perimeter). The sub-topologies took the following forms:

Triangle, Rectangle, Hexagon, Line, and one topology that included all of the sensors. With

the exception of the Line and All-Sensors topologies, every other topology type was varied

by excluding, and then including, the node located in its center. For example, the Rectangle

topology in Figure 21 was taken as shown, and again with the sensor located at coordinate

(35, 41). All 21 sub-topologies are depicted in Appendix C with overlays of the transmitter

locations.

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Rectangle Topology

Figure 21: The nodes of a rectangular sub-topology are selected while the remaining
sensors are excluded (subdued)

Figure 21: Rectangle sub-topology example

43 43

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Position Identifier

N
um

be
r o

f O
cc

ur
re

nc
es

Histogram of Sensor Inclusion
[Unique by Sensor Position]

1 2 3 4 5
0

5

10

15

20

Sensor Identifier

N
um

be
r o

f O
cc

ur
re

nc
es

Histogram of Sensor Inclusion
[Unique by Sensor Name]

Topology A Topology B

Figure 22: Histograms of sensor inclusion where F15 = [1, 6], F16 = [2, 7], F22 = [3, 8],
F35 = [4, 9], and F117 = [5, 10]
Figure 22: Histograms for sensor inclusion

The histograms of Figure 22 show how often each sensor position, and how often each

sensor was used to form our sub-topologies. Along the x-axis of the leftmost histogram,

sensor positions are listed using the following convention. As before "F15's" position is

designated by "1" and "F117's" position is designated by "5." Positions 6 through 10

represent the time shifted positions of the same five sensors - position 6 is "F15's" second

position, position 7 is "F16's" second position, and so on. In general, the first sensor

positions (Topology A in Figure 19) were used more often than the second sensor positions

(Topology B in Figure 19). The rightmost histogram in Figure 22 shows the frequency of

sensor inclusion. It indicates that "F22" and "F117" were tied as the two most-frequently-

included sensors. Both histograms helped us identify the critical dependencies of our

topology choices.

3.6.3 Design Measures for Time Shift Validity

Although time shifting added a great deal of flexibility to our post-processing

approach, its benefit would be moot unless our experiment design included an accurate data-

44 44

alignment process. When we first introduced our data collection process (in Section 3.3.1),

we explained that each signal data file was time stamped with the current system time. As

listed in Figure 8, this timestamp was associated with the system time immediately before the

signal capture function call. In this way, each signal capture could be identified according to

when it was collected. However, in order to align the separate sets of data, they needed to be

time stamped with respect to a common time reference.

As part of our first design measure, we established a common time reference by

creating a wired, local area network (LAN). The host computers for all sensing nodes were

joined to the same subnet as the transmitter's host computer, which acted as the network

time protocol (NTP) server. Under this architecture, the sensors' host computers would

synchronize their system clocks by polling the time server upon system boot-up and

periodically thereafter. Using an independent digital clock, we performed a simple test to

confirm that all system time clocks were accurate to at least the nearest second.

Using an NTP server allowed us to mark every signal data file with a timestamp

based on a common-reference clock. Thus, we were able to keep our experimental

procedure simple. Each node was commanded to start signal capture, one at a time. Once all

of the nodes were capturing, we activated the transmitting node to broadcast an audio file

for 61 seconds. After all trials and signal collections were complete, we merely needed to

identify a common signal event (for example, the first peak of the received signal), and note

its associated timestamp. So long as the transmitter emitted the same 61 seconds of audio

during each trial, this alignment process was valid regardless of where or when a given

sensor node made a signal collection. Without ignoring the fact that an emitted signal would

be received at different times by antennas at two different locations, we performed a

calculation to further justify our decision to align data in this fashion. Under free space

45 45

propagation of RF signals across separation distances no larger than 33 feet, the time

differences of arrival among the sensing nodes are on the order of (9.8 x 108 ft/sec)-1 x 33 ft

≈ 33.7x 10-9 seconds, or tens of nanoseconds. This figure of merit is much smaller than our

timekeeping precision, and is therefore negligible.

Our final design measure in support of time shift regarded how we implemented

timestamps during the data reduction process. As stated before, the timestamps were given

as Epoch time, which denotes the number of seconds since midnight of January 1, 1970 [51].

This number was given with decimal seconds, as in 1231832819.020. To help simplify

our alignment and time-averaging processes, we ignored partial-second increments by

truncating the timestamps to whole numbers of seconds. Doing this changed the

"resolution" of contiguous data captures to be relative to the nearest second. For example,

signal captures that occurred at 1231832819.020 and then at 1231832819.35 may

have just as well occurred in the reverse order. Thus, when we applied our time-averaging

process to datasets collected by any given node, we specified an averaging interval of one

second.

3.6.4 Experiment Execution

Our collaboration experiment was conducted outdoors in an uncovered parking lot.

Our equipment setup was no less than 50 feet away from vehicles or other large RF

reflective objects. Weather conditions were more accommodating than usual for a typical

Ohio winter: a high temperature in the low 40s, clear skies, 70% humidity, and winds from

the South-southwest averaging 10 mph [52]. Our first order of business was to mark the

sensor and transmitter positions on the parking lot surface since we were going to reposition

the nodes during the four phases of our experiment (as given in Figure 23). Each node was

46 46

elevated 12 inches above the ground using plastic storage containers to minimize RF ground

effects. The power and networking cables were routed along the ground to a cart that carried

our portable power unit and network router. This cart was located at what would have

appeared as coordinate (10, 10) in our topology diagrams - far enough to have little to no

influence on the experiment devices.

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Phase I

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Phase II

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)
Y

 C
oo

rd
in

at
e

(fe
et

)

Phase III

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Phase IV

Figure 23: Four phases of the outdoor experiment

Figure 23: Four-phases of the outdoor experiment

Before we began Phase I of our experiment, we followed a list of pre-test checks: (1)

all network cable connections are secured and active, (2) all host computer clocks are

synchronized to the nearest second, (3) all antennas are upright, fully-extended and

positioned squarely above their mark, and (4) all sensor nodes detect the test audio broadcast

from the transmitter. This set of pre-test checks helped to ensure that the sensor layout

matched what we designed and that the equipment was functioning as expected. Between

phases, this list was reduced to check-items (2) and (3).

At the beginning of every phase, each sensing node was remotely started using a

remote desktop application. Once all of the nodes had begun collecting signal data, the

transmitter node was remotely activated, and a digital timer was started. After 61 seconds

had elapsed, the transmitter was turned off and then the sensing nodes were commanded to

stop signal collection. Upon completion of the final phase, all signal data were retrieved from

47 47

the host computers, and organized in preparation for data reduction (as discussed in Section

3.3.2).

3.6.5 Topology Simulation

The simulation software, which we borrowed from [9], utilized a two-step approach.

First, assuming a log-normal fading environment, received power values were generated for

a randomly-placed network of sensors that were observing a transmitter. The transmitter's

position was unknown to the sensor nodes. Then, the localization routine was applied to

estimate various characteristics of the unknown transmitter based on the received power

values and locations of the observing nodes. We modified the software so that we could

simulate the performance of our sub-topology configurations.

The first change we made was to create a wrapper function that iteratively invoked

the simulation software much like our data reduction process invoked the localization

algorithm, findomni2.m. Then, we adjusted the code that generated the simulated sensor

positions to, instead, read the sensor positions that were based on our topological design.

Then, the fading model variance parameter was adjusted to what we felt was comparable to

the outdoor environment at the time of our experiment. This term (given in dB) governed

how heavily the fading model was applied. A variance of 4 dB corresponded with an

uncluttered environment (such as a desert), and a variance of 12 dB was associated with

considerable levels of shadowing and multipath (such as an urban environment). Originally

we selected a variance of 4 dB, but after reviewing the simulated data, we reduced this value

to 3 dB because it yielded position error figures that were more on par with our experimental

data. The final change we made was to disable the antenna shaping code and thus make the

transmitter an omnidirectional emitter.

48 48

3.7 Summary

In this chapter we described the tools we used to conduct our experiments. We also

discussed how these tools were incorporated into our data collection, data reduction and

hardware characterization procedures. A description of our localization algorithm was

provided, as well as the details regarding how our collaboration experiments were conducted.

49 49

IV. Data Analysis

4.1 Introduction

Our data analysis process takes position estimation results from our node

localization experiment -- conducted using actual hardware in an uncluttered outdoor

environment -- and compares them with results for the same experiment which was

reenacted in a simulated environment. The purpose of this chapter is to review all of the

facets that helped us form a comparison between the topologies we tested and between the

different environments they were tested in. In Section 4.2 we list, define, and justify the

performance metrics we used in our comparison. In Section 4.3 we share our general

hypotheses about topology performance based on the size of a given topology and its node

distribution with respect to an emitter. Section 4.4 provides our observations and

performance comparisons between the topologies as they operated in the outdoor

environment (henceforth, real world), first according to their "helpfulness" (in terms of

absolute error), and then with regard to their "effectiveness"(in terms of normalized error).

In Section 4.5, we compare the real-world results with the simulated results to identify

similar and dissimilar trends between them.

4.2 Performance Metrics

Our performance metrics were derived from the position estimates that were

generated by our localizing sub-topologies. Using the known transmitter locations, we

calculated position errors by evaluating

(9)

which is written more explicitly as,

50 50

(10)

where xguess and yguess are the estimated transmitter coordinates; and xtrue and ytrue are the

transmitter's actual coordinates. By performing this calculation for all position estimates, we

created two time-varying error vectors for each sub-topology – one error vector with respect

to each transmitter location. For example, Figure 24 compares the radial position errors for a

triangle and a hexagon topology as they vary over time.

0 20 40 60
0

5

10

15

20

25

30

Radial Position Error Over Time
Versus TX1

Time (sec)

Po
sit

io
n

E
rr

or
 (f

ee
t)

0 20 40 60
0

5

10

15

20

25

30

Radial Position Error Over Time
Versus TX2

Time (sec)

Ra
di

al
 P

os
iti

on
 E

rr
or

 (f
ee

t)

Triangle3
Hexagon1B

Figure 24: Time-varying radial error comparison between Triangle_3 and Hexagon_1B

Figure 24: Time-varying radial error comparison between Triangle_3 and Hexagon_1B

Since the radial position errors varied over time (as seen in Figure 24), we calculated

the mean position errors for our topologies to quantify their performance. Then, we sought

to qualify each topology's performance according to how precise (or consistent) its position

estimates were, regardless of whether they were correct or not. This was done by calculating

the variance of the position errors. By combining these two metrics – mean position error

and position error variance – we were able to make absolute comparisons between our

topologies according to how accurate and how consistent they were with their localization

attempts.

51 51

4.3 General Observation Guidelines

As can be observed in Appendix C, our topologies varied by size, shape, and

orientation with respect to the transmitter locations. Some topologies surrounded a TX

node, and some did not. Some topologies were very sparse, while others were relatively

dense. These and other cursory observations were considered when we formed our short-list

of guidelines which we used to gauge our data’s correctness. First, our general belief was that

as more nodes surrounded an emitter, the average position error should be relatively lower

because there would be more independent observations of the same phenomena as opposed

to a sparse network. Second, for those topologies that had the option available, adding the

center node should reduce the topology's position error variance. A node added to a

topology's center would increase the topology's spatial diversity without disrupting its

symmetry as opposed to adding the node somewhere beyond the topology's perimeter. And

third, we believed that topologies which had a symmetrical distribution of nodes about (or

near) an emitter would have lower average position error values than those topologies that

were not. Symmetry would offer positive redundancy which would help reduce ambiguity,

and thereby produce more consistent estimates.

4.4 Real World Results

Using the performance metrics we defined (in Section 4.2) we constructed the plots

of Figure 25 and Figure 26 to compare topology performance against both transmitter

locations. This type of plot shows the mean absolute error for each topology (shown as bars),

as well as the variance associated with their position error distributions (shown as square-

ended stems). The mean absolute error plots can be used to look at topology performance

on an individual basis or between topologies of the same size (as in number of nodes).

52 52

Figure 25: Mean absolute position error for all real world topologies against TX_1

Figure 25: Mean absolute position error for all real world topologies against TX_1

For example, topologies 1 through 5 (the 3-node Triangles) can be directly compared

with topologies 11 and 12 (the 3-node Small Triangles), but not with topologies 6 through 10

(the 4-node Triangles). Using mean absolute error is but one way to make comparisons, such

as determining which topology had the largest position error or which topologies were

statistically similar. These kinds of comparison are good; however, a normalized comparison

is more meaningful because it takes into account topology size. In this way, smaller

topologies would be praised for exemplary performance, and larger topologies would be

penalized for not performing better than their peers. Thus, we begin our comparisons using

measures of mean absolute error to determine which topologies were the "most helpful",

and then continue with an analysis of those topologies that were "most effective."

53 53

Figure 26: Mean absolute position error for all real world topologies against TX_2

Figure 26: Mean absolute position error for all real world topologies against TX_2

As we delved deeper into the data to understand why particular results were the way

they were, we spotted a problem. Looking again at the right plot of Figure 24, we saw that

the position errors for both topologies started with a large decrease before carrying on as

they should. This initial drop only occurred for some sets of data and for other sets there

was a large change at the end of the time series. We were hesitant to believe that these events

were caused by misalignment of the signal data. Instead, we believed it was caused either by

a single, or a pair of "misbehaving nodes." (We discuss our efforts to identify these nodes

later.) To avoid skewing our data as a result of a few outliers, we removed the first and last

position estimate for all data sets before we made our comparisons.

Comparing the plots of Figure 25 and Figure 26 we see that Triangle_3 (ID: 3) and

Triangle_3B (ID: 8) have the largest mean absolute errors against TX_1 and TX_2 – 11.97

feet and 17.32 feet, respectively. The topology layouts (in Appendix C) show that Triangle_3

did not surround TX_1 and Triangle_3B's nodes were far removed from TX_2

54 54

(approximately 20-32 feet). On the other hand, Hexagon_1 (ID: 15) and Hexagon_1B (ID:

16) produced the smallest mean errors – 3.79 feet and 3.5 feet, respectively. Both hexagon

variants were spatially diverse and were symmetric. For example, symmetry with respect to

TX_1 can be seen if a horizontal line is drawn across the middle of Hexagon_1, and a line

drawn diagonally across Hexagon_1B (from top left to bottom right) reveals its symmetry

with TX_2.

Continuing with Figure 25 and Figure 26, Triangle_3 produced the largest variances

in both cases – 34.96 feet2 and 22.13 feet2, respectively. But most surprising of all, against

TX_1, Triangle_3B had the smallest error variance, which was very close to zero. We

verified an approximate value of 2 × 10-29 feet2. Referring to the topology layouts, we saw

that Triangle_3B's nodes surrounded TX_1 and were relatively close (approximately 4-13

feet). Rectangle_1 (ID: 13) had the smallest error variance against TX_2 – 0.07 feet2.

Additionally, we wanted to see how performance changed when topologies were

switched from localizing TX_1 to localizing TX_2. More specifically, we wanted to observe

the topologies that had the most dramatic changes to better understand how transmitter

positioning played a role. The largest increase in position error was by Triangle_3B (12.85

feet) since it was initially close to TX_1 and then relatively far from TX_2. The Line_3

topology (ID: 19) had the largest decrease in position error (7.95 feet), which came to us as a

surprise. Having a mean position error of 3.96 feet placed it within rank of the hexagon and

rectangle topologies. This went contrary to our observation guidelines, which did not look

favorably upon line topologies. The line topologies were not spatially diverse, they did not

surround the transmitter, and they almost never had some form of symmetry about the

transmitter (with the exception of Line_3 versus TX_1). However, from this dramatic

performance improvement we learned that spatial diversity does not only apply to a degree

55 55

of node scatter taken with respect to two dimensions, but it also refers to a range of

separation distances taken along some axis, or a single dimension. In the case of Line_3

versus TX_2, this axis can be drawn such that it connects all of the node positions and

terminates at the transmitter's location.

The largest error variance increase (or decrease in estimate precision) was by the All

Sensors topology (5.96 feet2). This was expected since the transmitter’s position was moved

from being surrounded by the topology’s nodes to being located outside of the topology's

perimeter. The largest decrease in error variance was by Small Triangle_1 (12.57 feet2). Being

more than 14 feet farther from TX_2 (than to TX_1) and that fact that it occupied a

relatively small area gave Small Triangle_1 a large decrease in stability performance. In

general, the hexagon topologies yielded smaller position errors, and the error variances for

the rectangle topologies were consistently small. Both results agree with our first and third

observation guidelines.

After we finished our initial survey, all of the numerical data for Figure 25 and Figure

26 were compiled into a table so that the topologies could be ranked. Our goal was to

summarize the data according to how well the topologies helped to locate a transmitter by

being both accurate (by having a low mean position error) and stable (by having a low error

variance). We arranged the data into four columns as shown by the solid vertical lines in

Table D1 in Appendix D. Then, we divided the rankings into thirds. For the top-third and

bottom-third rankings, we created two histograms which represented the "best of the best"

and the "worst of the worst" based on how frequently each topology appeared in the four

columns belonging to the upper and lower rankings, respectively. We provide these

histograms in Figure 27.

56 56

0

1

2

3

4

5

16 13 15 19 5 7 8 10 14 21 1 9 20 2 3 4 6 11 12 17 18
M

or
e

N
um

be
r o

f
O

cc
ur

re
nc

es

Topology Identifier

Most Helpful Topologies

0
1
2
3
4
5

3 11 17 18 2 7 9 20 1 4 5 8 10 12 19 21 6 13 14 15 16
M

or
e

N
um

be
r o

f
O

cc
ur

re
nc

es

Topology Identifier

Least Helpful Topologies

Figure 27: Histograms of the most helpful and least helpful sensor topologies

Figure 27: Histograms of the most helpful and least helpful sensor topologies

The Hexagon_1B (ID: 16) and Triangle_3 (ID: 3) topologies were ranked as the

absolute best and absolute worst topologies, respectively. The time-varying position error

plots in Figure 24 provide a qualitative idea of how different the two topologies performed.

The hexagon's error was nearly constant for the duration of the trials, and the triangle's error

was very erratic. Their qualities of performance are compared further when the position

estimates are viewed as scatter plots. Figure 28 shows relatively benign scatter plots given by

the Hexagon_1B topology, while Figure 29 depicts scatter plots of Triangle_3's position

estimates. (The outliers were kept in both figures for emphasis.) The shapes of the position

estimates in Figure 29 seemed to point towards the top-leftmost sensor (F117_B) instead of

forming a relatively Gaussian distribution. In an effort to find out why the position estimates

were scattered in this fashion, we took a look at the received power of the topologies' nodes.

57 57

Figure 28: Scatter plot of Hexagon_1B’s position estimates

The plots of Figure 30 depict the received power for the Triangle_3 (top row) and

Hexagon_1B (bottom row) topologies according to the distance between their nodes and the

transmitter. In keeping with communications theory, we expected to see an exponential

decay of the received power. To make this trend more apparent, we converted the power

values into the log domain and applied a linear fit to each case.

Figure 29: Scatter plot of Triangle_3’s position estimates

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Position Estimate Scatter Plot
Hexagon1B vs TX1

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Position Estimate Scatter Plot
Hexagon1B vs TX2

Figure 28: Scatter plot of Hexagon_1B’s position estimates (59 estimates each)

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Position Estimate Scatter Plot
Triangle3 vs TX1

20 25 30 35 40 45 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Position Estimate Scatter Plot
Triangle3 vs TX2

Figure 29: Scatter plot of Triangle_3’s position estimates (59 estimates each)

58 58

Figure 30: Received power by distance for Triangle_3 and Hexagon_1B

The log-domain equivalent plots for Figure 30 are shown in Figure 31 and Figure 32,

as well as the residual plots from the linear fit tests. The linear fit has a negative slope in all

cases, and the residuals are nearly symmetric about their respective zero-error lines. These

indications suggest good exponential decay. However, we were concerned with the

abnormally large power values at distances 10.3 and 14.2 feet in Figure 30's bottom-left and

bottom-right plots, respectively. Both values belonged to F16_A. Going even further, we

examined the node populations for the worst-of-the-worst topologies (from Figure 27) and

found that of the four worst performing topologies, the most frequently-used node was

F16_A.

Figure 30: Received power by distance for Triangle_3 (top) and Hexagon_1B (bottom)

59 59

Figure 31: Log-domain representation of the average received power of Triangle_3’s nodes
with linear fit curves and residual their associated residuals

Figure 31: Log-domain representation of received power for Triangle_3’s nodes

Figure 32: Log-domain representation of the average received power of Hexagon_1B’s
nodes with linear fit curves and residual their associated residuals

Figure 32: Log-domain representation of received power for Hexagon_1B’s nodes

60 60

Given what we saw here, we concluded that the F16_A node may have been faulty.

The USRP characterization data (Figure 16) showed near identical responses among the

USRPs in a lab environment, however unlikely it seemed, there may have been something

unknown to us that affected the F16 USRP at its Topology_A location. Since the sensor

inclusion histogram (Figure 22, right) did not show F16 (ID: 2) to be one of the most

frequently used nodes, we continued our comparisons of the real world data.

As we stated earlier, using a mean absolute position error is just one way to make

comparisons. To expand our analysis we took into account topology size so that we could

normalize the position error values, and thus compare any pair of topologies, regardless of

their sizes. This kind of comparison is instrumental for doing a cost-benefit analysis. In

effect it would allow us to find which topology gave the most value using the least resources

under our experiment conditions. To form the normalized position error and normalized

variance values we evaluated:

errornorm = �number of nodes × mean(errorradial
2)

(11)

and

(12)

where the number of nodes have been used to scale the mean squared error and the variance

of the square error. The results of our calculations are depicted in Figure 33 and Figure 34.

The topology rankings are listed in Table D2 in Appendix D.

Applying the same ranking method as described earlier, we sorted the topologies

according to their normalized mean position errors and their normalized error variances. We

called this normalized ranking a measure of topology effectiveness, and they are reflected in

Figure 33 and Figure 34. The least effective topologies were Line_2 and Small Triangle_1.

Line_2's poor performance was expected since its node positions did not line up alongside

61 61

the transmitter in either position (as Line_3's nodes were arranged against TX_1). The nodes

of Small Triangle_1 surrounded TX_1 in an almost ideal fashion – the transmitter was

located at its center. Therefore, we expected that this supposedly ideal arrangement would

reflect favorably in the topology's position estimates, especially since the nodes were no

more than 5 feet away. But this turned out not to be the case. Upon revisiting the

localization code, we realized that the variance of the distances between each node and the

transmitter were close to zero. Since this value was taken as a denominator term, it reflected

as an unstable topology, analytically. When viewed in this regard, Small Triangle_1

performed as it should have against TX_1. Small Triangle_1 was expected to fare poorly

since it was very far removed from TX_2.

Figure 33: Normalized position error for all real world topologies against TX_1

Figure 33: Normalized position error for all real world topologies against TX_1

62 62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

50

100

150

200

250

Topology Identifier

N
or

m
 M

ea
n

Po
sit

io
n

E
rr

or
 /

 N
or

m
 P

os
iti

on
 E

rr
or

 V
ar

ia
nc

e

Normalized Mean Position Error and Normalized Position Error Variance
Topologies against TX2

Norm Mean Position Error (feet)
Norm Position Error Variance (feet2)

Figure 34: Normalized position error for all real world topologies against TX_2

Figure 34: Normalized position error for all real world topologies against TX_2

The most effective topology was Hexagon_1B. It was consistently more stable and

more accurate than the other topologies. In contrast, despite having a relatively low mean

position error (approximately 4 feet), Hexagon_1's error variance (4.37 feet2), which was

comparable with Line_2's error variance (4.43 feet2), translated into a large normalized width.

This goes to show that if a topology with many nodes does not perform significantly better,

it should be penalized. As the rankings indicate, if given the choice to select either the

hexagon with the center node or without, the more effective choice would be to include the

center node because it added significant value.

4.5 Simulation Results

Using the same metrics and the same topologies, we created similar position error

plots for the simulation results. Figure 35 and Figure 36 were used to draw comparisons as

we had done before, and we made note of any similarities between the trends given by the

63 63

simulated data with what we saw from the real world data. Part of the value in emulating our

topologies using the simulation was to be able to see how performance would change given

an environment where the nodes were identical. An initial look at the un-normalized mean

position errors revealed that the topologies' results occurred in clusters and that similar

topologies were performed similarly (with the exception of Line_1). For example, Triangles

1 through 5 (the 3-node triangles) had similar mean position errors and were separate from

Triangles 6 through 10 (the 4-node triangles). The clustering of the errors was a good

indication that there were distinctions between the different types of topologies. However,

the nearly monotonic mean error values suggested a trend that disregarded the various

topology orientations with respect to the transmitter; it did not seem correct that Triangle_1

(ID: 1) and Triangle_2 (ID: 2) should ever have comparable mean position error values.

Figure 35: Mean absolute position error for all simulated topologies against TX_1

Figure 35: Mean absolute position error for all simulated topologies against TX_1

64 64

Figure 36: Mean absolute position error for all simulated topologies against TX_2

According to the simulated data, Triangle_5 (ID: 5) and Line_1 (ID: 17) had the

largest mean position errors against TX_1 and TX_2, respectively. This claim against

Triangle_5 does not match the real world data, which indicated that Triangle_5 was in the

third tier for "Most Helpful" topology. On the other hand, the claim regarding Line_1 did

correspond with the experimental results, which had it ranked as the "Least Helpful"

topology. A general comparison showed that the position error variance for the simulation

data was five times greater than the real world position error variance, on average. This

comparison convinced us that the simulation results were not as close to the real world data

as we hoped.

Figure 36: Mean absolute position error for all simulated topologies against TX_2

65 65

V. Conclusions and Recommendations

5.1 Introduction

 The purpose of this chapter is to summarize the conclusions of our research. We

begin with a review of our research objectives. Then, we discuss the significance of what our

efforts accomplished. Finally, we provide our recommendations for future work.

5.2 Review of Research Objective

As introduced in Section 1.3, our first objective was to demonstrate that

collaborative localization could be implemented in real time. We were successful in

implementing a real-time process (Appendix B), however we chose to discuss our more

flexible post-processing approach in Chapters 3 and 4. This approach not only proved to be

highly reconfigurable, but also an excellent learning tool. Our second objective was to

examine the position estimate accuracy of our testbed. We gave a comparison of position

estimation performance for all of our topologies using mean absolute error plots.

Additionally, we compared topology performance using a normalized metric that took into

account the topology's size. Overall we showed our hexagon topology was the most effective

(with mean position errors near 4 feet), and that our triangle and line topologies were the

least effective (with mean position errors approaching 12 feet). Finally, our third objective

was to compare simulation results with real-world results. Unfortunately, our comparisons

showed that these results were not in total agreement. We are led to believe that despite our

efforts to emulate a larger sensor array, the simulation code we used was better equipped for

much larger sensor networks (for S = 100 nodes instead of S = 10 nodes).

66 66

5.3 Significance of Research

 This research broke new ground by actually demonstrating principles of collaborative

localization -- a topic more commonly explored using simulation experiments alone. A major

benefit of our research is that the flexible sensor network implemented here could be

modified to extend more concepts that, to date, still only exist on paper. Modern military

communications devices are being extended to support the Network-Centric Warfare

(NCW) vision, in which network cohesion and information sharing take precedence. As the

capabilities of information resources are extended to support automated collaboration, all

users of this technology would benefit from the higher quality of information that it would

offer. Our sliver of research has shown that it can be done.

5.4 Recommendations for Future Research

 The research effort presented in this thesis can be extended in several ways. First, we

recommend that our experiments are repeated using directional antennas at each transmitter

location. In this way, more compelling arguments for the benefits of collaborative location

can be made through a real-world demonstration. Next, we recommend that the sensor

network undergo evolutionary modification that includes: removing the LAN requirement

for time syncing, reconfiguring the USRPs’ hardware and software to operate in another (or

multiple) frequency bands, and having the radios implement a common resource map to

transfer digital data among each other. The objective would be to construct a scenario in

which a successful outcome depends on how well the radios can collaborate. Finally, we

recommend the creation of a shared language (similar in style to semantic web) that would

be extensible by design, so that a more formal process can be put in place whereby the

radios could query each other and an observer could query the sensor network.

67 67

5.5 Summary

 In this chapter, we presented the conclusions of this research. Also, we reviewed the

objectives that we intended to meet. We discussed the significance of our research and

finally, offered some recommendations for future research.

68 68

Appendix A. GNU Radio Sample Code

The GNU Radio software includes several development tools and programming

libraries to interact with the USRP hardware. For example, the Python scripting language

serves as the primary language used to command the hardware. In general, this is done by

calling libraries, classes and signal processing blocks; and then linking those pieces together

in a more human-readable, object-oriented programming (OOP) style. Since this process

takes some time to get acclimated to, we strongly recommend any GNU Radio and USRP

hardware newcomer to follow the series of tutorials created by Dawei [53].

An excerpt of code is provided in Figure A1. This code was taken from a Python

script (usrp_wfm_rcv.py) which uses the USRP hardware to capture wideband FM

radio transmissions, and then plays the received audio through a computer’s speakers.

1 #!/usr/bin/env python

2

3 from gnuradio import gr, gru, eng_notation, optfir

4 from gnuradio import audio

5 from gnuradio import usrp

6 from gnuradio import blks

7 from gnuradio.eng_option import eng_option

8 from gnuradio.wxgui import slider, powermate

9 from gnuradio.wxgui import stdgui, fftsink

10 from optparse import OptionParser

11 imprt usrp_dbid

12 import sys

13 import math

14 import wx
Figure A1: Excerpt code from usrp_wfm_rcv.py showing import statements

69 69

Line 1 is an optional statement that allows the script to be executable from the command

line. The text that follows in lines 3 through 14 are import statements. They invoke modules

and packages that would be used throughout the script and are typically called upon at the

beginning. Modules are files that contain Python definitions and statements. Packages are

collections of modules that have similar functions. There also exist sub-packages that group

even more closely related modules together. For example, Line 9 of Figure A1 states: from

the wxgui subpackage (of the larger gnuradio package) import the stdgui and

fftsink modules. Note that it is not required to import all modules in a sub-package.

Here only two modules were needed from wxgui, and so only two were imported.

Classes in Python operate much the same way as classes do in other OOP languages.

Figure A2 shows the wfm_rx_graph class declaration which defines the user interface

and signal processing routine.

30

31

32

33

34

35

36 help="select USRP Rx side A or B (default=A)")

37

38 help="set frequency to FREQ", metavar="FREQ")

39

40 help="set gain in dB (default is midpoint)")

41

42 help="pcm device name. E.g., hw:0,0 or surround51 or /dev/dsp")

43

44

parser.add_option("-g", "--gain", type="eng_float", default=None,

parser.add_option("-D", "--audio-device", type="string", default="",

(options, args) = parser.parse_args()

class wfm_rx_graph (stdgui.gui_flow_graph):

def __init__(self, frame, panel, vbox, argv):

parser = OptionParser(option_class = eng_option)

parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,

stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)

parser.add_option("-f", "--freq", type="eng_float", default=100.1e6,

Figure A2: Excerpt code from usrp_wfm_rcv.py showing class declaration

70 70

In Line 30, the class declaration utilizes a package-module relationship to define a new class

(wfm_rx_graph) that is derived from the gui_flow_graph module (a sub-module of

the sdgui module imported in Line 9 of Figure A1).

In the lines following, wfm_rx_graph is given a set of initial conditions (Lines 31

and 32), defines command-line option assignments (Lines 34 – 42), and calls a parsing

function to sort the user-input options (Line 44). These options are listed at the command

line and may specify parameter such as the type of receiver daughterboard to be used and

the center frequency it will be tuned to. For example, the following statement may be

entered at the command line:

1 ./usrp_wfm_rcv.py -R B -f 99.9M

This command would invoke the usrp_wfm_rcv.py script to use the receiving

daughterboard located on Side B of the USRP motherboard (likely a Basic RX or TVRX

daughterboard), and to tune its center frequency to 99.9 MHz. What results is a display

similar to the one shown in Figure A3.

Figure A3: Graphical display of usrp_wfm_rcv.py tuned to 99.9 MHz

71 71

Joining all of the software pieces is performed easily using and intuitive structure.

Line 89 of Figure A4 sets the audio device (by default the host computer’s sound card) as

the audio sink. Line 92 joins the radio, filter, signal processing blocks, volume adjustment

control, and sound card in the order they are passed in the connect function.

89 audio_sink = audio.sink(int(audio_rate), options.audio_device)
90
91 self.connect(self.u, chan_filt, self.guts, self.volume_control, audio_sink)

Figure A4: Excerpt code taken from usrp_wfm_rcv.py showing audio sink declaration and
software block connect statement

This concludes our introductory look at GNU Radio code. However, several other

online sources are available to get started. Here they are listed in descending order according

to our personal preference: [53], [54], [55], [56].

72 72

Appendix B. Real-time Collaborative Localization

In this section we discuss the central software tool used to perform our experiments,

the RSSI Localization Code. The code is shared between two files. The first file makes use of

an already-existing GNU Radio script (usrp_spectrum_sense.py) by appending our

station detection algorithm, RSSI algorithm, and sensor collaboration procedures. The

second file is a Python port of the omnidirectional node localization function which was

originally written as M-code by Martin in support of the simulations described in [9].

The localization experiments are conducted using a sensor array which observes an

emitter node. The emitter node transmits audio much like a local radio station by mixing

audio signal from a song with a carrier tone. As such, each sensor must be able to identify

any potential stations within its viewable band that need to be localized. This process should

be performed iteratively and consistently among all members of the sensor array.

The usrp_spectrum_sense.py script is provided upon installation of the

GNU Radio development toolkit. Its primary functions are to continuously sweep through

the entire FM band (88 MHz - 108 MHz) at evenly-spaced center frequencies, collect a

stream of complex signal data, and calculate the magnitude squared of the signal in the

frequency domain – a power spectral density (PSD). As Figure 11 depicts, each sweep-

iteration in the time domain ends with an un-normalized PSD calculation for a sampled

signal 128 µsec in duration. Although the example script provides PSD data for all

frequencies in the FM band, we only need a sub-band of frequencies to be monitored in

order to carry out our experiments. Thus, the tuning algorithm was changed to remain fixed

on a user-defined center frequency.

73 73

Determining the presence of a radio station requires a systematic approach of

distinguishing potential channels of interest versus noise. We devised an algorithm that

calculates the average PSD given an averaging interval and then uses a sliding window to

single out clusters of frequencies with relatively high energy – potential radio stations. The

time averaging process depicted in Figure 12 shows several PSDs occurring at regular time

intervals being reduced to a single PSD whose shape is smoother and less noisy. Given a

five-second time interval, approximately 430 PSDs will be used to form an average. Once a

time-averaged PSD is produced, stations are more readily identified because a significant

portion of the noise is averaged out.

The sliding-window process relies on two concepts: (1) a fixed number of

contiguous data points (the window), and (2) movement of the window’s boundaries along

an axis (the sliding motion). A window placed anywhere along the frequency axis of the

time-averaged PSD will enclose a cluster of received power values. If this window is aligned

with a station, the sum of the received power values is declared the RSSI of that station and

the center x-value of the window is declared the station’s center frequency. But, to ensure

that our algorithm only acknowledges valid stations, each realization of the sliding window

must go through a vetting process, and the window must be made appropriately wide.

Every time-averaged PSD has an associated average power that is calculated across

its entire viewable bandwidth (a global average power). For each sliding window position,

the average power bounded by the window (a local average power) is compared to the global

average power. If the local average power is equal to or greater than the global average

power, we are confident that a station resides partially or completely within the window. Any

window position for which the local average power is less than the global average power is

ignored. Figure B1 identifies typical window alignment conditions.

74 74

Figure B1: Typical un-normalized PSD showing the global average power across the
viewable band

Figure B2 shows the transition from a time-averaged PSD to a pseudo-RSSI plot

once the sliding window has traversed the entire frequency axis. By using this average power

comparison technique, we see that weaker signals and noise are excluded.

Figure B2: Time-averaged PSD (left) transition to a pseudo-RSSI plot (right)

A brief comparison of station detection results for several window widths is offered

in Figure B3. The differences in window size affect the number of stations that are detected

successfully. Once possible stations are identified, the center x-values are retrieved. Finally,

75 75

summations are performed using the values adjacent to each center frequency (the only

remaining non-zero values).

Figure B3: Sliding window width comparison with pseudo-RSSI plot overlay

76 76

Appendix C. Sensor Topologies

20 25 30 35 40 45 5020

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

USRP Experiment Topology -- Legend

F117_B

10
F35_A

4

F16_A

2

F22_B

8
F15_A

1F35_B

9F117_A

5

F22_A

3
F15_B

6

F16_B

7

Figure C1: Topology legend showing sensor identities

77 77

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle1

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle2

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle1B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle2B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle3

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle3B

78 78

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle4

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle4B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle5

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Triangle5B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Small Triangle1

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Small Triangle2

79 79

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Rectangle1

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Rectangle1B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Hexagon1

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Hexagon1B

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Line1

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Line2

80 80

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Line3

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

Line4

20 30 40 50
20

25

30

35

40

45

50

X Coordinate (feet)

Y
 C

oo
rd

in
at

e
(fe

et
)

All Sensors

Figure C2: Sensor topologies with sensor locations shown as triangles and transmitter
locations as squares

81 81

Appendix D. Topology Rankings

Table D1: Topology rankings using real world data

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 15 3.7851 16 3.4969 8 0 13 0.1361
2 16 3.8742 19 3.9639 7 0.106 16 0.1714
3 21 4.4043 15 4.1711 15 0.1734 9 0.176
4 8 4.4721 5 4.5138 16 0.1827 14 0.2176
5 14 4.4874 7 4.5874 13 0.209 10 0.4269
6 13 4.7751 1 5.2602 21 0.2275 20 0.4773
7 5 5.883 10 5.4406 19 0.2965 19 0.536
8 2 6.0491 2 5.5109 14 0.3846 6 0.5836
9 17 6.4806 21 5.6101 6 0.4617 12 0.6694

10 1 6.9204 12 6.0102 10 0.7911 4 0.7743
11 12 7.8911 3 7.1398 20 0.8504 5 0.815
12 4 8.1566 14 7.2281 1 0.8974 8 0.8849
13 6 8.3275 13 7.3737 18 1.2699 11 1.0455
14 9 9.1528 6 7.5511 4 1.2851 15 1.0669
15 20 10.2453 4 8.4658 9 1.3206 18 1.0752
16 10 10.2566 9 9.582 2 1.3784 7 1.1767
17 7 10.8327 17 9.9171 12 1.5 21 1.2662
18 18 10.8892 20 14.1901 5 1.5044 1 1.3626
19 11 11.6025 11 15.2708 11 2.0898 2 1.393
20 19 11.9167 18 16.0315 17 2.1901 17 1.3999
21 3 11.9714 8 17.3203 3 3.0173 3 2.4006

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

Table D2: Topology ranking using normalized real world data

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 8 8.9443 19 8.1967 8 0 13 7.8173
2 15 9.3083 5 8.2852 13 7.4665 16 8.1412
3 13 9.5846 16 9.2937 15 8.4581 9 13.5931
4 14 10.1722 1 10.1997 7 9.2233 14 14.9856
5 16 10.2932 7 10.2511 16 10.2008 10 19.503
6 5 11.3779 2 10.6341 14 15.66 19 21.1357
7 2 11.4581 12 10.6509 21 20.9803 5 24.399
8 1 12.3611 10 11.0069 19 28.1883 12 27.041
9 17 13.4278 15 11.4092 6 28.5459 6 35.9264

10 21 13.9976 13 14.7568 1 36.2594 4 39.8855
11 12 14.5701 3 14.7711 2 50.3413 1 52.3639
12 4 14.7746 4 14.8928 10 55.9041 7 52.7111
13 6 16.7514 6 15.2716 5 56.4046 20 54.2762
14 9 19.0111 14 16.1901 4 64.5759 2 55.5537
15 10 20.7422 17 17.8112 12 72.7113 15 92.6852
16 20 20.7552 9 19.1763 20 73.1738 11 93.1902
17 11 21.291 21 19.3715 9 84.2739 17 95.3259
18 7 21.6693 11 26.6827 18 102.4515 8 106.4256
19 18 22.3303 20 28.4408 17 104.3838 18 139.5096
20 3 23.0875 18 32.3341 11 140.3247 3 143.3983
21 19 23.8612 8 34.8109 3 195.9913 21 152.5331

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

82 82

Table D3: Topology ranking using simulated data

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 21 5.1896 20 4.9924 9 1.2202 20 1.1182
2 10 5.2941 10 5.8392 18 1.2786 10 1.2632
3 15 5.4234 14 6.1013 8 1.3335 15 1.518
4 8 5.589 8 6.2603 21 1.4635 18 1.5373
5 18 5.6732 18 6.269 14 1.4775 6 1.5691
6 6 5.7202 21 6.4252 15 1.5639 19 1.5974
7 7 5.8916 6 6.4489 7 1.5688 7 1.5987
8 20 6.0417 16 6.4644 10 1.6004 21 1.6608
9 9 6.068 15 6.5404 19 1.6176 14 1.7014

10 13 6.1814 13 6.6697 13 1.7184 9 1.7061
11 16 6.2797 19 6.7218 6 1.7352 8 1.7535
12 14 6.3338 9 6.8331 16 1.7581 16 1.8012
13 19 6.8189 7 6.9852 20 1.7961 13 1.8982
14 2 11.8661 3 14.85 3 2.4599 4 3.8823
15 1 12.4499 4 15.1855 17 2.703 17 3.9818
16 17 12.7192 2 15.6584 11 2.7506 11 4.1858
17 4 12.7209 1 16.7918 4 2.7836 5 4.2118
18 11 12.8941 12 17.0073 2 2.8021 2 4.2361
19 3 13.1468 5 17.3369 1 2.8185 1 4.2694
20 12 13.2218 11 18.0146 5 2.8756 12 4.3373
21 5 13.2304 17 18.9017 12 2.9139 3 4.8076

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

Table D4: Topology ranking using normalized simulated data

RANK Topology Mean Error Topology Mean Error Topology Variance Topology Variance
1 10 12.2792 20 10.8893 8 61.4206 20 52.1065
2 8 12.3206 10 12.6679 18 62.2494 10 65.472
3 18 12.3864 18 13.8882 9 67.2809 18 98.2556
4 9 13.0293 8 14.2543 7 78.6881 6 99.0538
5 7 13.2665 6 14.2662 10 80.0974 7 103.9888
6 6 13.2793 19 14.8072 19 90.1743 19 107.1703
7 20 13.9539 9 15.1892 20 95.6038 8 120.2211
8 13 14.0508 13 15.2427 6 96.4126 9 126.0681
9 19 15.0164 7 15.2893 14 103.338 13 136.1069

10 15 15.2271 14 15.5165 13 108.7081 14 138.1652
11 14 15.5493 15 17.5741 15 114.0277 15 159.9327
12 21 18.7128 16 19.4483 21 166.4936 16 202.1052
13 16 18.9133 21 22.7365 16 178.6767 21 298.7552
14 2 22.6124 4 29.3679 3 200.4101 4 345.6858
15 1 23.5574 3 30.3857 2 203.9151 2 386.3385
16 17 23.8342 2 30.639 1 207.6708 1 394.2617
17 4 23.9417 1 32.439 4 208.9645 5 396.9483
18 11 24.1752 12 32.875 11 213.9479 11 400.3386
19 3 24.2288 5 33.2051 17 216.7458 12 400.6844
20 5 24.8749 11 34.2342 12 220.2961 17 410.5908
21 12 24.9117 17 35.3745 5 224.2536 3 444.0298

ACCURACY
(mean position error)

STABILITY
(position error variance)

Against TX1 Against TX2 Against TX1 Against TX2

83 83

Bibliography

[1] Anonymous "Spectrum policy task force report," Federal Communications Commission,

Tech. Rep. Technical Report 02-135, Nov, 2002.

[2] Anonymous (2008, Apr). Wireless data drives high growth in U.S. telecommunications

industry says new report. Fierce Wireless [Online]. 2009(01/11), pp. 1.
Available: http://www.fiercewireless.com/press-releases/wireless-data-
drives-high-growth-u-s-telecommunications-industry-says-new-report

[3] A. Singh. (2008, Oct). Telecommunications future growth predicted. TMCnet [Online].

2009(01/11), pp. 1. Available:
http://ipcommunications.tmcnet.com/topics/ip-
communications/articles/43864-telecommunications-future-growth-
predicted.htm

[4] K. Gerwig. (2008, Feb). Telecom market heading for healthy growth, TIA projects.

SearchTelecom [Online]. 2009(01/11), pp. 1. Available:
http://searchtelecom.techtarget.com/news/article/0,289142,sid103_gci1302
583,00.html

[5] J. Ewing. (2008, May). Telecom's last great growth markets. BusinessWeek [Online].

2009(01/11), pp. 1. Available:
http://www.businessweek.com/magazine/content/08_22/b4086056645511.
htm

[6] J. Mitola III and G. Q. Maguire Jr. (1999, Cognitive radio: Making software radios more

personal. Personal Communications, IEEE 6(4), pp. 13-18.

[7] S. M. Mishra, A. Sahai and R. W. Brodersen, "Cooperative Sensing among Cognitive

Radios," Communications, 2006. ICC '06. IEEE International Conference on, vol.
4, pp. 1658-1663, 2006.

[8] C. R. C. M. da Silva, W. C. Headley, J. D. Reed and Youping Zhao, "The application of

distributed spectrum sensing and available resource maps to cognitive radio
systems," Information Theory and Applications Workshop, 2008, pp. 53-57, 2008.

[9] R. K. Martin and R. W. Thomas, "Algorithms and Bounds for Estimation of

Directionality of Primary Spectrum Users," Submitted to IEEE Trans.
Wireless Comm,

[10] L. Genco. (2009, Old-time radio: The golden years. [Online]. 2009(01/10), pp. 1.

Available: http://www.old-time.com/golden_age/index.html

[11] Anonymous (2009, VSS forecast communications industry sectors 2006 - 2011.

[Online]. 2009(01/10), pp. 1. Available:

84 84

http://www.marketingcharts.com/television/communications-spend-to-
reach-1-trillion-in-08-internet-to-surpass-all-ad-segments-in-2011-1206/vss-
forecast-communications-industry-sectors-2006-2011jpg/

[12] R. I. Lackey and D. W. Upmal. (1995, Speakeasy: The military software radio.

Communications Magazine, IEEE 33(5), pp. 56-61.

[13] J. Mitola III. (1992, Software radios-survey, critical evaluation and future directions.

Telesystems Conference, 1992. NTC-92. , National pp. 13/15-13/23.
[14] D. Wilson, "Emerging technology: Will software-defined radio shake up

communications?" Electronics Design, Strategy, News, vol. 2009, pp. 1, Aug 21.
2007.

[15] A. Shah and V. Bose. (1999, Accelerating evolution of the cellular infrastructure using

software radios. [Online]. Available: http://vanu.com/wp-
content/resources/publications/1999accelerating_evolution_of_cellular_infr
astructure.pdf

[16] B. Fette, Cognitive Radio Technology. ,1st ed.New York: Elsevier, 2006, pp. 656.

[17] J. Mitola III. (2008, Nov). Joseph mitola III homepage. [Online]. 2009(02/25), pp. 1.

Available: http://web.it.kth.se/~maguire/jmitola/

[18] R. W. Thomas, "Cognitive networks," New Frontiers in Dynamic Spectrum Access Networks,

2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 352-360,
2005.

[19] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses and N. S. Correal.

(2005, Locating the nodes: Cooperative localization in wireless sensor
networks. Signal Processing Magazine, IEEE 22(4), pp. 54-69.

[20] G. Jordt, "Evaluation of energy costs and error performance of range-aware, anchor-

free localization algorithms for wireless sensor networks," Department of
Electrical and Computer Engineering, pp. 11-12, March. 2006.

[21] M. Aatique, "Evaluation of TDOA Technique fo Position Location in CDMA System,"

Master's Thesis at Virginia Polytechnic Institute and State University, pp. 4-5, August.
1997.

[22] C. Drane, M. Macnaughtan and C. Scott. (1998, Positioning GSM telephones.

Communications Magazine, IEEE 36(4), pp. 46-54, 59.

[23] J. Heyer and L. C. Schuette. (2004, Sept). NRL - unattended ground sensor network.

[Online]. 2009(2/9), pp. 1. Available:
http://www.nrl.navy.mil/content.php?P=04REVIEW185

85 85

[24] Anonymous (2006, Jan). Unattended ground sensors. Defense Update [Online]. 2009(2/9),
pp. 5. Available: http://defense-update.com/features/du-1-06/feature-
ugs.htm

[25] I. Hakala, M. Tikkakoski and I. Kivela. (2008, Wireless sensor network in environmental

monitoring - case foxhouse. Sensor Technologies and Applications, 2008.
SENSORCOMM '08. Second International Conference on pp. 202-208.

[26] R. Bharadwaj, S. Mukhopadhyay, M. Peralta, K. Shenai and S. Majumder. (2008,

Cognitive distributed networks in environmental e-science. Future Trends of
Distributed Computing Systems, 2008. FTDCS '08. 12th IEEE International
Workshop on pp. 192-198.

[27] Garam Park and Yoo Jaeheung. (2008, Suggesting infection causes monitoring system

based on wireless sensor network for hospital infection control. Advanced
Communication Technology, 2008. ICACT 2008. 10th International Conference on
1pp. 642-647.

[28] J. Markoff. (2008, Jul). Can't find a parking spot? check smartphone. NY Times [Online].

BusinessAvailable:
http://www.nytimes.com/2008/07/12/business/12newpark.html?ex=13736
01600&en=9e06e6d3c756ca1a&ei=5124&partner=permalink&exprod=per
malink

[29] Anonymous (2008, Sept). 2003 CBECS detailed tables: Summary. [Online]. 2009(2/9),

pp. 1. Available:
http://www.eia.doe.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/deta
iled_tables_2003.html#enduse03

[30] T. Carlon. (2005, Sept). Building systems program: Wireless. [Online]. 2009(2/9), pp. 1.

Available:
http://www.buildingsystemsprogram.pnl.gov/wireless/in_building.stm

[31] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks:

a survey," Computer Networks, vol. 38, pp. 393, 2002.

[32] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum and L. Viennot. (2001,

Optimized link state routing protocol for ad hoc networks. Multi Topic
Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings.
IEEE International pp. 62-68.

[33] C. E. Perkins and E. M. Royer. (1999, Ad-hoc on-demand distance vector routing.

Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA '99. Second
IEEE Workshop on pp. 90-100.

[34] J. Park, J. Han, K. Kang and K. H. Lee, "The Registry for Sensor Network Discovery,"

Engineering Complex Computer Systems, 2007. 12th IEEE International Conference
on, pp. 129-137, 2007.

86 86

[35] P. K. Varshney. (1997, Multisensor data fusion. Electronics & Communication Engineering

Journal 9(6), pp. 245-253.

[36] M. Bedworth and J. O'Brien. (2000, The omnibus model: A new model of data fusion?

Aerospace and Electronic Systems Magazine, IEEE 15(4), pp. 30-36.

[37] B. Dasarathy, Decision Fusion. Los Alamitos, CA: IEEE Computer Society Press, 1994,

pp. 381.

[38] O. Kessler and B. Fabian, "Estimation and ISR process integration," Defense Advanced

Projects Research Agency, Washington, D.C., 2001.

[39] D. Smith and S. Singh. (2006, Approaches to multisensor data fusion in target tracking:

A survey. Knowledge and Data Engineering, IEEE Transactions on 18(12), pp.
1696-1710.

[40] S. Thrun. (2006, Winning the DARPA grand challenge: A robot race through the

mojave desert. Automated Software Engineering, 2006. ASE '06. 21st
IEEE/ACM International Conference on pp. 11-11.

[41] A. Toga and P. Thompson, "The role of image registration in brain mapping," Image and

Vision Computing, vol. 19, pp. 3-24, 2001.

[42] D. L. Hall and J. Llinas. (1997, An introduction to multisensor data fusion. Proc IEEE

85(1), pp. 6-23.

[43] D. L. Hall and S. A. H. McMullen, "Introduction to multisensor data fusion," in

Mathematical Techniques in Multisensor Data Fusion ,2nd ed.Anonymous MA:
Artech House, 2004, pp. 1-35.

[44] Anonymous (2008, Dec). The free software definition. [Online]. 2009(01/14), pp. 1.

Available: http://www.gnu.org/philosophy/free-sw.html

[45] Q. Norton. (2006, Jun). GNU radio opens an unseen world. Wired [Online]. 2009(1/10),

pp. 2. Available:
http://www.wired.com/science/discoveries/news/2006/06/70933

[46] Ettus Research. (2008, Nov). Ettus research order page. [Online]. 2009(01/10), pp. 1.

Available: http://www.ettus.com/orderpage.html

[47] E. Blossom. (2004, Nov). Exploring GNU radio. [Online]. 2009(2/7), pp. 1. Available:

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html

[48] Anonymous (2008, Dec). ECE team takes first place in smart radio challenge '08.

[Online]. 2009(02/25), pp. 1. Available:
http://www.ece.cmu.edu/news/story/2008/12/ece_team_takes/

87 87

[49] R. Peter. (2008, Jun). Usrp/FAQ/Intro/FPGA. [Online]. 2009(02/18), pp. 1. Available:
http://www.gnuradio.org/trac/wiki/UsrpFAQ/Intro/FPGA

[50] Anonymous (2001, Sept). 4937 DI5 RF tuner module advance data sheet. [Online].

Available: http://www.comsec.com/usrp/microtune/4937-DI5-3x8899-
2.pdf

[51] Anonymous (2009, Epoch converter. [Online]. 2009(02/21), pp. 1. Available:

http://www.epochconverter.com/

[52] Anonymous (2009, Jan 22). History for wright-patt AFB, OH. Weather Underground

[Online]. 2009(01/26), pp. 1. Available:
http://www.wunderground.com/history/airport/KFFO/2009/1/22/Daily
History.html?req_city=NA&req_state=NA&req_statename=NA

[53] D. Shen. (2006, 28 Feb 06). USRP tutorials. [Online]. 2009(10 Jan 09), pp. 1. Available:

http://www.nd.edu/~jnl/sdr/docs/tutorials/

[54] J. Blum. (2008, Sept). Learning by example - josh knows | GNU radio. [Online].

2009(01/17), pp. 1. Available:
http://www.joshknows.com/?key=gnuradio#example

[55] R. Kern. (2008, Nov). NumPy for matlab users. [Online]. 2009(01/17), pp. 1. Available:

http://www.scipy.org/NumPy_for_Matlab_Users

[56] F. Abbas. (2007, Nov). Simple user manual for GNU radio 3.1.1. [Online]. 2009(01/17),

Available: http://www.ece.jhu.edu/~cooper/SWRadio/Simple-Gnuradio-
User-Manual-v1.0.pdf

88 88

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

27-03-2009
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2008 – March 2009
4. TITLE AND SUBTITLE

IMPLEMENTATION OF COLLABORATIVE RF
LOCALIZATION USING A SOFTWARE-DEFINED
RADIO NETWORK

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Honore, Augustine, A., First Lieutenant, USAF

5d. PROJECT NUMBER
09 - 265

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/09-20

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RYRE AFMC
Attn: Mr. Vasu Chakravarthy
2241 Avionics Circle
WPAFB AFB, OH 45433 DSN: 785-5579 (vasu.chakravarthy@wpafb.af.mil)

10. SPONSOR/MONITOR’S
ACRONYM(S)
AFRL/RYRE
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis investigates the use of collaboration between sensor nodes that were tasked with localizing a radio frequency emitter.
Localization is a necessary component for dynamic spectrum access. Using a set of software-defined radios as our sensors and a received
signal strength-based maximum likelihood localization algorithm, we successfully localized transmitting nodes based on their received
signal strength. Our experiment was conducted outdoors using a flexible topology that could be shaped into 21 sub-topologies that varied
in size, and orientation with respect to the transmitters. This was made possible through application of a time shift concept and a post-
processing technique. We were able to compare our real world results with the simulated results of the same topologies. Although our
simulation results did not fully comply with our real world results, we observed some common trends regarding effective topology
design.
15. SUBJECT TERMS
Collaboration, Cognitive Radio, Cognitive Network, Localization, Received Signal Strength (RSS), Software-Defined Radio

16. SECURITY
CLASSIFICATION OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF

PAGES

99

19a. NAME OF RESPONSIBLE PERSON
Ryan Thomas, Capt, USAF (ENG)

a.
REPO
RT

U

b.
ABSTRA
CT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4613
(ryan.thomas@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

89 89

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	1.1 Motivation
	1.2 Background
	1.3 Research Objectives
	1.4 Research Scope
	1.5 Assumptions and Limitations
	1.6 Thesis Document Organization

	II. Background
	2.1 Introduction
	2.2 Cognitive Radio and Cognitive Networks
	2.3 Node Localization Techniques
	2.3.1 Received Signal Strength Indicated
	2.3.2 Time of Arrival
	2.3.3 Time Difference of Arrival
	2.3.4 Angle of Arrival

	2.4 Wireless Sensor Networks
	2.5 Multisensor Data Fusion
	2.6 Summary

	III. Methodology
	3.1 Introduction
	3.2 The GNU Radio Development Software and Universal Software Radio Peripheral
	3.2.1 GNU Radio
	3.2.2 USRP
	3.2.3 Decimation and FFT size
	3.2.4 Determining the Decimation Rate and FFT Size

	3.3 Data Collection and Data Reduction Methodologies
	3.3.1 USRP Data Collection
	3.3.2 MATLAB Data Reduction
	3.3.3 Unexpected Problem: Ringing

	3.4 Hardware Characterization
	3.5 RSSI Localization Implementation
	3.5.1 RSSI Localization Algorithm
	3.5.2 Usage Considerations

	3.6 Collaboration Experiments
	3.6.1 Overview
	3.6.2 Time Shift Concept
	3.6.3 Design Measures for Time Shift Validity
	3.6.4 Experiment Execution
	3.6.5 Topology Simulation

	3.7 Summary

	IV. Data Analysis
	4.1 Introduction
	4.2 Performance Metrics
	4.3 General Observation Guidelines
	4.4 Real World Results
	4.5 Simulation Results

	V. Conclusions and Recommendations
	5.1 Introduction
	5.2 Review of Research Objective
	5.3 Significance of Research
	5.4 Recommendations for Future Research
	5.5 Summary

	Appendix A. GNU Radio Sample Code
	Appendix B. Real-time Collaborative Localization
	Appendix C. Sensor Topologies
	Appendix D. Topology Rankings
	Bibliography

